地下水水文学--4
地下水水文學--4
- 1. Groundwater flow to wells(井流)
- 1.1 Steady-flow: Thesis equation
- 1.1.1 steady radial flow in confined aquifer due to pumping--Thesis equation
- 1.1.2 steady radial flow in unconfined aquifer due to pumping
- 1.2 Transient flow to well--unsteady-state(confined aquifer--Theis solution)
2022.04.02
1. Groundwater flow to wells(井流)
1.1 Steady-flow: Thesis equation
landfill填埋場
Terminology related well pumping
fully penetrating well
完整井,貫通整個含水層的井,非完整井,反之
1.1.1 steady radial flow in confined aquifer due to pumping–Thesis equation
M,K,rw,h0,Q,s(r),h(r)M,K,r_w, h_0, Q, s(r), h(r)M,K,rw?,h0?,Q,s(r),h(r)
2-D, homogenous, isotropic, steady-state, uniform
Firstly, for confined aquifer
KM?2h?x2+KM?2h?y2=0KM \frac{\partial^2 h }{\partial x^2}+KM \frac{\partial^2 h }{\partial y^2}=0 KM?x2?2h?+KM?y2?2h?=0
for well flow
KM?2h?x2+KM?2h?y2+W(x,y)=0KM \frac{\partial^2 h }{\partial x^2}+KM \frac{\partial^2 h }{\partial y^2}+W(x,y)=0\\ KM?x2?2h?+KM?y2?2h?+W(x,y)=0
柱坐標
x=rcos(θ),y=rsin(θ),x2+y2=r2x=rcos(\theta),y=rsin(\theta),x^2+y^2=r^2 x=rcos(θ),y=rsin(θ),x2+y2=r2
將直角坐標轉換為柱坐標,帶入方程,則G.E.
KM1rddr(rdhdr)=0,井流的基本方程KM\frac{1}{r}\fracze8trgl8bvbq{dr}(r\frac{dh}{dr})=0,\,井流的基本方程 KMr1?drd?(rdrdh?)=0,井流的基本方程
boundary condition
h=h0,r=RQ=K2πrM?h?r,r=rw,流量邊界,流入井的流量,側面流進去,最大高度只能是Mh=h_0,r=R\\ Q=K2\pi rM\frac{\partial h}{\partial r},r=r_w, \\流量邊界,流入井的流量,側面流進去,最大高度只能是M h=h0?,r=RQ=K2πrM?r?h?,r=rw?,流量邊界,流入井的流量,側面流進去,最大高度只能是M
在任意位置
Q=K2πrM?h?r,r=r1Q=K2\pi rM\frac{\partial h}{\partial r}, r=r_1 Q=K2πrM?r?h?,r=r1?
Q(r1)與抽水量Q的關系,Q(r1)=QQ(r_1)=QQ(r1?)=Q
Q=K2πrM?h?r∫Q/rdr=∫KM2πdhh=Q2πTln(r)+Ch0=Q2πTln(R)+CQ=K2\pi rM\frac{\partial h}{\partial r}\\ \int{Q/r}dr=\int{KM2\pi dh}\\ h=\frac{Q}{2\pi T}ln(r)+C\\ h_0=\frac{Q}{2\pi T}ln(R)+C Q=K2πrM?r?h?∫Q/rdr=∫KM2πdhh=2πTQ?ln(r)+Ch0?=2πTQ?ln(R)+C
得
s=h0?h=Q2πTln(Rr)s=h_0-h=\frac{Q}{2\pi T}ln(\frac{R}{r}) s=h0??h=2πTQ?ln(rR?)
寫成log
s=h0?h=Q2.73Tlg(Rr),降深公式Theimequationforconfinedaquiferduetowells=h_0-h=\frac{Q}{2.73 T}lg(\frac{R}{r}),\,降深公式\\ Theim equation for confined aquifer due to well s=h0??h=2.73TQ?lg(rR?),降深公式Theimequationforconfinedaquiferduetowell
則兩個觀測井,可以觀測到兩個及兩個降深s1,s2s_1,s_2s1?,s2?
s1?s2=Q2πTln(r2r1)s_1-s_2=\frac{Q}{2\pi T}ln(\frac{r_2}{r_1}) s1??s2?=2πTQ?ln(r1?r2??)
基于以上公式,可以進行參數估計,求得導水系數TTT, 抽水試驗確定導水系數。只能確定滲透系數或導水系數。
1.1.2 steady radial flow in unconfined aquifer due to pumping
和承壓不一樣在于有自由水面
2-D, isotropic, with Dupuit assumption
K,rw,h0,Q,s(r),h(r)K,r_w, h_0, Q, s(r), h(r)K,rw?,h0?,Q,s(r),h(r)
G.E.
K1rd(hdhdr)dr=0h在里面非線性K\frac{1}{r}\frac{d(h\frac{dh}{dr})}{dr}=0\\h在里面非線性 Kr1?drd(hdrdh?)?=0h在里面非線性
Boundary conditon
Q=KAi=K2πrhdhdrQ=KAi=K2\pi r h\frac{dh}{dr} Q=KAi=K2πrhdrdh?
推導
∫hdh=∫Q2πKrdr\int{h}dh=\int{\frac{Q}{2\pi Kr}}dr ∫hdh=∫2πKrQ?dr
最終得;
h02?h2=QπKln(Rr),Dupuitwellflowequationh_0^2-h^2=\frac{Q}{\pi K}ln(\frac{R}{r}), \\ Dupuit \,well\,flow\, equation h02??h2=πKQ?ln(rR?),Dupuitwellflowequation
變形:
(h0?h)(h0+h)=QπKln(Rr)∣s(2h0?s)=QπKln(Rr)=Q1,36Klg(Rr)(h_0-h)(h_0+h)=\frac{Q}{\pi K}ln(\frac{R}{r})\\ |\\ s(2h_0-s)=\frac{Q}{\pi K}ln(\frac{R}{r})=\frac{Q}{1,36K}lg(\frac{R}{r}) (h0??h)(h0?+h)=πKQ?ln(rR?)∣s(2h0??s)=πKQ?ln(rR?)=1,36KQ?lg(rR?)
參數估計:已知降深,可以求KKK
以上均為理想狀態。we need transient
1.2 Transient flow to well–unsteady-state(confined aquifer–Theis solution)
求解方程,考慮水位隨時間變化
homo, isotropic, confined aquifer, h(r,t)h(r,t)h(r,t)
T1r(r?h?r)=S?h?tT \frac{1}{r}(r\frac{\partial h}{\partial r})=S\frac{\partial h}{\partial t} Tr1?(r?r?h?)=S?t?h?
展開為:
?2h?r2+1r?h?r=ST?h?r\frac{\partial^2 h}{\partial r^2}+\frac{1}{r}\frac{\partial h}{\partial r}=\frac{S}{T}\frac{\partial h}{\partial r} ?r2?2h?+r1??r?h?=TS??r?h?
寫成降深得形式,帶入s=h0?hs=h_0-hs=h0??h
?2s?r2+1r?s?r=ST?s?rs(r,t)=0,t=0s(r,t)=0,r?>+∞lim?r?>0r?s?r=?Q2πT,r=0\frac{\partial^2 s}{\partial r^2}+\frac{1}{r}\frac{\partial s}{\partial r}=\frac{S}{T}\frac{\partial s}{\partial r}\\ s(r,t)=0,t=0\\ s(r,t)=0,r->+\infty\\ \lim_{r->0}r\frac{\partial s}{\partial r}=\frac{-Q}{2\pi T},r=0 ?r2?2s?+r1??r?s?=TS??r?s?s(r,t)=0,t=0s(r,t)=0,r?>+∞r?>0lim?r?r?s?=2πT?Q?,r=0
Q=?2πTr?s?rQ=-2\pi T r\frac{\partial s}{\partial r} Q=?2πTr?r?s?
井處的流量最大,離井越遠,流量越小
Qi<QQ_i<Q Qi?<Q
Solution
s(r,t)=Q4πTW(u),Theisequaitons(r,t)=\frac{Q}{4\pi T}W(u), Theis equaiton s(r,t)=4πTQ?W(u),Theisequaiton
W(u)=∫u∞e?xxdxu=r2s4TtW(u)=\int_{u}^{\infty}\frac{e^{-x}}{x}dx\\ u=\frac{r^2s}{4Tt} W(u)=∫u∞?xe?x?dxu=4Ttr2s?
W(u)為泰斯井函數
部分內容轉載自南方科技大學梁修雨教授地下水水文學講課PPT
總結
- 上一篇: firebird修复_FirebirdS
- 下一篇: 南京硬盘数据恢复