2021牛客多校9 - Cells(推公式+NTT)
題目鏈接:點擊查看
題目大意:初始時給出 nnn 個點,分別為 {(0,a0),(0,a1),?,(0,an)}\{(0,a_0),(0,a_1),\cdots,(0,a_n)\}{(0,a0?),(0,a1?),?,(0,an?)},每次可以向下走或向左走,問到達點 {(1,0),(2,0),?,(n,0)}\{(1,0),(2,0),\cdots,(n,0)\}{(1,0),(2,0),?,(n,0)} 且路徑不相交的方案數(shù)
題目分析:有向圖路徑不相交方案數(shù)問題,考慮 LGVLGVLGV 定理,實質(zhì)上就是要求
假設(shè) aia_iai? 和 bjb_jbj? 用坐標(biāo)表示,那么不難看出 e(ai,bj)=((ai,x?bj,x)+(ai,y?bj,y)ai,x?bj,x)e(a_i,b_j)={(a_{i,x}-b_{j,x})+(a_{i,y}-b_{j,y})\choose a_{i,x}-b_{j,x}}e(ai?,bj?)=(ai,x??bj,x?(ai,x??bj,x?)+(ai,y??bj,y?)?)
又因為本題中 ai=(0,ai)a_i=(0,a_i)ai?=(0,ai?),bj=(j,0)b_j=(j,0)bj?=(j,0),所以e(ai,bj)=(ai+jj)e(a_i,b_j)={a_i+j\choose j}e(ai?,bj?)=(jai?+j?)
根據(jù) (nm)=n!m!(n?m)!{n \choose m}=\frac{n!}{m!(n-m)!}(mn?)=m!(n?m)!n!? 展開 e(ai,bj)=(ai+j)!j!ai!e(a_i,b_j)=\frac{(a_i+j)!}{j!a_i!}e(ai?,bj?)=j!ai?!(ai?+j)!?
于是目標(biāo)行列式為
M=∣(a1+1)!1!a1!(a1+2)!2!a1!?(a1+n)!n!a1!(a2+1)!1!a2!(a2+2)!2!a2!?(a2+n)!n!a2!????(an+1)!1!an!(an+2)!2!an!?(an+n)!n!an!∣M=\left |\begin{array}{cccc} \frac{(a_1+1)!}{1!a_1!} &\frac{(a_1+2)!}{2!a_1!} &\cdots& \frac{(a_1+n)!}{n!a_1!} \\ \frac{(a_2+1)!}{1!a_2!} &\frac{(a_2+2)!}{2!a_2!} &\cdots& \frac{(a_2+n)!}{n!a_2!} \\ \vdots & \vdots &\ddots&\vdots \\ \frac{(a_n+1)!}{1!a_n!} & \frac{(a_n+2)!}{2!a_n!} &\cdots&\frac{(a_n+n)!}{n!a_n!} \\ \end{array}\right| M=∣∣∣∣∣∣∣∣∣∣?1!a1?!(a1?+1)!?1!a2?!(a2?+1)!??1!an?!(an?+1)!??2!a1?!(a1?+2)!?2!a2?!(a2?+2)!??2!an?!(an?+2)!???????n!a1?!(a1?+n)!?n!a2?!(a2?+n)!??n!an?!(an?+n)!??∣∣∣∣∣∣∣∣∣∣?
每列提出 1j!\frac{1}{j!}j!1?
M=∏j=1n1j!∣(a1+1)!a1!(a1+2)!a1!?(a1+n)!a1!(a2+1)!a2!(a2+2)!a2!?(a2+n)!a2!????(an+1)!an!(an+2)!an!?(an+n)!an!∣M=\prod\limits_{j=1}^{n}\frac{1}{j!}\left |\begin{array}{cccc} \frac{(a_1+1)!}{a_1!} &\frac{(a_1+2)!}{a_1!} &\cdots& \frac{(a_1+n)!}{a_1!} \\ \frac{(a_2+1)!}{a_2!} &\frac{(a_2+2)!}{a_2!} &\cdots& \frac{(a_2+n)!}{a_2!} \\ \vdots & \vdots &\ddots&\vdots \\ \frac{(a_n+1)!}{a_n!} & \frac{(a_n+2)!}{a_n!} &\cdots&\frac{(a_n+n)!}{a_n!} \\ \end{array}\right| M=j=1∏n?j!1?∣∣∣∣∣∣∣∣∣∣?a1?!(a1?+1)!?a2?!(a2?+1)!??an?!(an?+1)!??a1?!(a1?+2)!?a2?!(a2?+2)!??an?!(an?+2)!???????a1?!(a1?+n)!?a2?!(a2?+n)!??an?!(an?+n)!??∣∣∣∣∣∣∣∣∣∣?
化簡
M=∏j=1n1j!∣(a1+1)(a1+1)(a1+2)?(a1+1)(a1+2)...(a1+n)(a2+1)(a2+1)(a2+2)?(a2+1)(a2+2)...(a2+n)????(an+1)(an+1)(an+2)?(an+1)(an+2)...(an+n)∣M=\prod\limits_{j=1}^{n}\frac{1}{j!}\left |\begin{array}{cccc} (a_1+1) &(a_1+1)(a_1+2) &\cdots& (a_1+1)(a_1+2)...(a_1+n) \\ (a_2+1) &(a_2+1)(a_2+2) &\cdots& (a_2+1)(a_2+2)...(a_2+n) \\ \vdots & \vdots &\ddots&\vdots \\ (a_n+1) &(a_n+1)(a_n+2) &\cdots&(a_n+1)(a_n+2)...(a_n+n) \\ \end{array}\right| M=j=1∏n?j!1?∣∣∣∣∣∣∣∣∣?(a1?+1)(a2?+1)?(an?+1)?(a1?+1)(a1?+2)(a2?+1)(a2?+2)?(an?+1)(an?+2)??????(a1?+1)(a1?+2)...(a1?+n)(a2?+1)(a2?+2)...(a2?+n)?(an?+1)(an?+2)...(an?+n)?∣∣∣∣∣∣∣∣∣?
根據(jù) (x+1)2=x2+2x+1=(x+1)(x+2)+(x+1)(x+1)^2=x^2+2x+1=(x+1)(x+2)+(x+1)(x+1)2=x2+2x+1=(x+1)(x+2)+(x+1)
以及 (x+1)3=x3+3x2+3x+1=(x+1)(x+2)(x+3)?3(x+1)(x+2)+(x+1)(x+1)^3=x^3+3x^2+3x+1=(x+1)(x+2)(x+3)-3(x+1)(x+2)+(x+1)(x+1)3=x3+3x2+3x+1=(x+1)(x+2)(x+3)?3(x+1)(x+2)+(x+1)
所以根據(jù)行列式的初等變換,是可以通過前面的列消去后面的列,使得行列式變成
M=∏j=1n1j!∣(a1+1)(a1+1)2?(a1+1)n(a2+1)(a2+1)2?(a2+1)n????(an+1)(an+1)2?(an+1)n∣M=\prod\limits_{j=1}^{n}\frac{1}{j!}\left |\begin{array}{cccc} (a_1+1) &(a_1+1)^2 &\cdots& (a_1+1)^n\\ (a_2+1) &(a_2+1)^2 &\cdots& (a_2+1)^n \\ \vdots & \vdots &\ddots&\vdots \\ (a_n+1) &(a_n+1)^2 &\cdots&(a_n+1)^n\\ \end{array}\right| M=j=1∏n?j!1?∣∣∣∣∣∣∣∣∣?(a1?+1)(a2?+1)?(an?+1)?(a1?+1)2(a2?+1)2?(an?+1)2??????(a1?+1)n(a2?+1)n?(an?+1)n?∣∣∣∣∣∣∣∣∣?
不難看出每一行提出 (x+1)(x+1)(x+1) 后,這就是一個 范德蒙德行列式
M=∏j=1n1j!∏i=1n(ai+1)∣1(a1+1)?(a1+1)n?11(a2+1)?(a2+1)n?1????1(an+1)?(an+1)n?1∣M=\prod\limits_{j=1}^{n}\frac{1}{j!}\prod\limits_{i=1}^{n}(a_i+1)\left |\begin{array}{cccc} 1 &(a_1+1) &\cdots& (a_1+1)^{n-1}\\ 1 &(a_2+1) &\cdots& (a_2+1)^{n-1} \\ \vdots & \vdots &\ddots&\vdots \\ 1 &(a_n+1) &\cdots&(a_n+1)^{n-1}\\ \end{array}\right| M=j=1∏n?j!1?i=1∏n?(ai?+1)∣∣∣∣∣∣∣∣∣?11?1?(a1?+1)(a2?+1)?(an?+1)??????(a1?+1)n?1(a2?+1)n?1?(an?+1)n?1?∣∣∣∣∣∣∣∣∣?
即
M=∏j=1n1j!∏i=1n(ai+1)∏1≤i<j≤n((aj+1)?(ai+1))M=\prod\limits_{j=1}^{n}\frac{1}{j!}\prod\limits_{i=1}^{n}(a_i+1)\prod\limits_{1\le i<j\le n}((a_j+1)-(a_i+1))M=j=1∏n?j!1?i=1∏n?(ai?+1)1≤i<j≤n∏?((aj?+1)?(ai?+1))
化到最簡
M=∏j=1n1j!∏i=1n(ai+1)∏1≤i<j≤n(aj?ai)M=\prod\limits_{j=1}^{n}\frac{1}{j!}\prod\limits_{i=1}^{n}(a_i+1)\prod\limits_{1\le i<j\le n}(a_j-a_i)M=j=1∏n?j!1?i=1∏n?(ai?+1)1≤i<j≤n∏?(aj??ai?)
瓶頸在于如何快速求解 ∏1≤i<j≤n(aj?ai)\prod\limits_{1\le i<j\le n}(a_j-a_i)1≤i<j≤n∏?(aj??ai?),參考之前的題目:2021HDU多校7 - 7054 不難發(fā)現(xiàn)可以將 aj?aia_j-a_iaj??ai? 視為背包,求出 c[k]c[k]c[k] 為 aj?ai=ka_j-a_i=kaj??ai?=k 的方案數(shù),那么答案就是 ∏kc[k]\prod k^{c[k]}∏kc[k] 了,加個偏移量當(dāng)背包轉(zhuǎn)移就好啦
需要注意的是,因為本題保證了 aia_iai? 是互不相同的,所以 c[k]c[k]c[k] 不會太大,不需要用 MTTMTTMTT 降冪,用 NTTNTTNTT 就足夠了
代碼:
// Problem: Cells // Contest: NowCoder // URL: https://ac.nowcoder.com/acm/contest/11260/C // Memory Limit: 1048576 MB // Time Limit: 6000 ms // // Powered by CP Editor (https://cpeditor.org)// #pragma GCC optimize(2) // #pragma GCC optimize("Ofast","inline","-ffast-math") // #pragma GCC target("avx,sse2,sse3,sse4,mmx") #include<iostream> #include<cstdio> #include<string> #include<ctime> #include<cmath> #include<cstring> #include<algorithm> #include<stack> #include<climits> #include<queue> #include<map> #include<set> #include<sstream> #include<cassert> #include<bitset> #include<list> #include<unordered_map> #define lowbit(x) (x&-x) using namespace std; typedef long long LL; typedef unsigned long long ull; template<typename T> inline void read(T &x) {T f=1;x=0;char ch=getchar();while(0==isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(0!=isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();x*=f; } template<typename T> inline void write(T x) {if(x<0){x=~(x-1);putchar('-');}if(x>9)write(x/10);putchar(x%10+'0'); } const int inf=0x3f3f3f3f; const int N=5e6+100,M=1e6,mod=998244353,G=3,Gi=(mod+1)/3; int limit,L,r[N]; int a[N],b[N]; int q_pow(int a,int b) {int ans=1;while(b) {if(b&1) ans=1LL*ans*a%mod;a=1LL*a*a%mod,b>>=1;}return ans; } int inv(int x) {return q_pow(x,mod-2); } void NTT(int *A,int type) {for(int i=0;i<limit;i++) if(i<r[i]) swap(A[i],A[r[i]]);for(int mid=1;mid<limit;mid<<=1) { int Wn=q_pow(type==1?G:Gi,(mod-1)/(mid<<1));for(int j=0;j<limit;j+=(mid<<1)) {int w=1;for(int k=0;k<mid;k++,w=1LL*w*Wn%mod) {int x=A[j+k],y=1LL*w*A[j+k+mid]%mod;A[j+k]=(x+y)%mod,A[j+k+mid]=(x-y+mod)%mod;}}}if(type==-1) {int inv=q_pow(limit,mod-2);for(int i=0;i<limit;i++) {A[i]=1LL*A[i]*inv%mod;}} } void init(int n,int m) {limit=1;L=0;while(limit<=n+m) limit<<=1,L++;for(int i=0;i<limit;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(L-1)); } int main() { #ifndef ONLINE_JUDGE // freopen("data.in.txt","r",stdin); // freopen("data.out.txt","w",stdout); #endif // ios::sync_with_stdio(false);int n;read(n);LL ans=1,fac=1;for(int i=1,x;i<=n;i++) {read(x);fac=fac*i%mod;ans=ans*inv(fac)%mod;ans=ans*(x+1)%mod;a[x]=1;b[M-x]=1;}init(M+1,M+1);NTT(a,1),NTT(b,1);for(int i=0;i<limit;i++) {a[i]=1LL*a[i]*b[i]%mod;}NTT(a,-1);for(int i=M+1;i<=M+M;i++) {ans=ans*q_pow(i-M,a[i])%mod;}cout<<ans<<endl;return 0; }總結(jié)
以上是生活随笔為你收集整理的2021牛客多校9 - Cells(推公式+NTT)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: CodeForces - 1559D2
- 下一篇: CodeForces - 1560F2