数据仓库分层和元数据管理
數倉的分層架構
按照數據流入流出的過程,數據倉庫架構可分為三層——源數據、數據倉庫、數據應用。
數據倉庫的數據來源于不同的源數據,并提供多樣的數據應用,數據自下而上流入數據倉庫后向上層開放應用,而數據倉庫只是中間集成化數據管理的一個平臺。
源數據層(ODS) :此層數據無任何更改,直接沿用外圍系統數據結構和數據,不對外開放;為臨時存儲層,是接口數據的臨時存儲區域,為后一步的數據處理做準備。
數據倉庫層(DW) :也稱為細節層,DW層的數據應該是一致的、準確的、干凈的數據,即對源系統數據進行了清洗(去除了雜質)后的數據。
數據應用層(DA或APP) :前端應用直接讀取的數據源;根據報表、專題分析需求而計算生成的數據。
數據倉庫從各數據源獲取數據及在數據倉庫內的數據轉換和流動都可以認為是ETL(抽取Extra, 轉化Transfer, 裝載Load)的過程,ETL是數據倉庫的流水線,也可以認為是數據倉庫的血液,它維系著數據倉庫中數據的新陳代謝,而數據倉庫日常的管理和維護工作的大部分精力就是保持ETL的正常和穩定。
為什么要對數據倉庫分層?
用空間換時間,通過大量的預處理來提升應用系統的用戶體驗(效率),因此數據倉庫會存在大量冗余的數據;不分層的話,如果源業務系統的業務規則發生變化將會影響整個數據清洗過程,工作量巨大。
通過數據分層管理可以簡化數據清洗的過程,因為把原來一步的工作分到了多個步驟去完成,相當于把一個復雜的工作拆成了多個簡單的工作,把一個大的黑盒變成了一個白盒,每一層的處理邏輯都相對簡單和容易理解,這樣我們比較容易保證每一個步驟的正確性,當數據發生錯誤的時候,往往我們只需要局部調整某個步驟即可。
數倉的元數據管理
元數據(Meta Date),主要記錄數據倉庫中模型的定義、各層級間的映射關系、監控數據倉庫的數據狀態及ETL的任務運行狀態。一般會通過元數據資料庫(Metadata Repository)來統一地存儲和管理元數據,其主要目的是使數據倉庫的設計、部署、操作和管理能達成協同和一致。
元數據是數據倉庫管理系統的重要組成部分,元數據管理是企業級數據倉庫中的關鍵組件,貫穿數據倉庫構建的整個過程,直接影響著數據倉庫的構建、使用和維護。
構建數據倉庫的主要步驟之一是ETL。這時元數據將發揮重要的作用,它定義了源數據系統到數據倉庫的映射、數據轉換的規則、數據倉庫的邏輯結構、數據更新的規則、數據導入歷史記錄以及裝載周期等相關內容。數據抽取和轉換的專家以及數據倉庫管理員正是通過元數據高效地構建數據倉庫。
用戶在使用數據倉庫時,通過元數據訪問數據,明確數據項的含義以及定制報表。
數據倉庫的規模及其復雜性離不開正確的元數據管理,包括增加或移除外部數據源,改變數據清洗方法,控制出錯的查詢以及安排備份等。
元數據可分為技術元數據和業務元數據。技術元數據為開發和管理數據倉庫的IT 人員使用,它描述了與數據倉庫開發、管理和維護相關的數據,包括數據源信息、數據轉換描述、數據倉庫模型、數據清洗與更新規則、數據映射和訪問權限等。而業務元數據為管理層和業務分析人員服務,從業務角度描述數據,包括商務術語、數據倉庫中有什么數據、數據的位置和數據的可用性等,幫助業務人員更好地理解數據倉庫中哪些數據是可用的以及如何使用。
由上可見,元數據不僅定義了數據倉庫中數據的模式、來源、抽取和轉換規則等,而且是整個數據倉庫系統運行的基礎,元數據把數據倉庫系統中各個松散的組件聯系起來,組成了一個有機的整體。
總結
以上是生活随笔為你收集整理的数据仓库分层和元数据管理的全部內容,希望文章能夠幫你解決所遇到的問題。