视觉十四讲:第六讲_g2o图优化
生活随笔
收集整理的這篇文章主要介紹了
视觉十四讲:第六讲_g2o图优化
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
g2o是一個基于圖優化的庫,圖優化是把優化問題表現為一種圖的方式。一個圖由若干個頂點和邊組成。
頂點表示優化變量,邊表示誤差項。
g2o的使用步驟:
1.定義頂點和邊的類型;
2.構建圖;
3.選擇優化算法;
4.調用g2o進行優化
#include <iostream>
#include <g2o/core/g2o_core_api.h>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/core/optimization_algorithm_dogleg.h>
#include <g2o/solvers/dense/linear_solver_dense.h>
#include <Eigen/Core>
#include <opencv2/core/core.hpp>
#include <cmath>
#include <chrono>
using namespace std;
// 曲線模型的頂點,模板參數:優化變量維度和數據類型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
// 初始化
virtual void setToOriginImpl() override {
_estimate << 0, 0, 0;
}
// 更新估計值
virtual void oplusImpl(const double *update) override {
_estimate += Eigen::Vector3d(update);
}
// 存盤和讀盤:留空
virtual bool read(istream &in) {}
virtual bool write(ostream &out) const {}
};
// 誤差模型 模板參數:觀測值維度,類型,連接頂點類型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
//可傳入變量
CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}
// 計算曲線模型誤差
virtual void computeError() override {
//獲取最新的估計值
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
//估計值賦值
const Eigen::Vector3d abc = v->estimate();
//計算誤差
_error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));
}
// 計算雅可比矩陣
virtual void linearizeOplus() override {
//獲取最新的估計值
const CurveFittingVertex *v = static_cast<const CurveFittingVertex *> (_vertices[0]);
//估計值賦值
const Eigen::Vector3d abc = v->estimate();
//雅克比矩陣賦值
double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);
_jacobianOplusXi[0] = -_x * _x * y;
_jacobianOplusXi[1] = -_x * y;
_jacobianOplusXi[2] = -y;
}
virtual bool read(istream &in) {}
virtual bool write(ostream &out) const {}
public:
double _x; // x 值, y 值為 _measurement
};
int main(int argc, char **argv) {
double ar = 1.0, br = 2.0, cr = 1.0; // 真實參數值
double ae = 2.0, be = -1.0, ce = 5.0; // 估計參數值
int N = 100; // 數據點
double w_sigma = 1.0; // 噪聲Sigma值
double inv_sigma = 1.0 / w_sigma;
cv::RNG rng; // OpenCV隨機數產生器
vector<double> x_data, y_data; // 數據
for (int i = 0; i < N; i++) {
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
}
// 構建圖優化,先設定g2o
typedef g2o::BlockSolver<g2o::BlockSolverTraits<3, 1>> BlockSolverType; // 每個誤差項優化變量維度為3,誤差值維度為1
typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 線性求解器類型
// 梯度下降方法,可以從GN, LM, DogLeg 中選
auto solver = new g2o::OptimizationAlgorithmGaussNewton(
g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
g2o::SparseOptimizer optimizer; // 圖模型
optimizer.setAlgorithm(solver); // 設置求解器
optimizer.setVerbose(true); // 打開調試輸出
// 往圖中增加頂點
CurveFittingVertex *v = new CurveFittingVertex();
v->setEstimate(Eigen::Vector3d(ae, be, ce));
v->setId(0);
optimizer.addVertex(v);
// 往圖中增加邊
for (int i = 0; i < N; i++) {
CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
edge->setId(i);
edge->setVertex(0, v); // 設置連接的頂點
edge->setMeasurement(y_data[i]); // 觀測數值
edge->setInformation(Eigen::Matrix<double, 1, 1>::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩陣:協方差矩陣之逆
optimizer.addEdge(edge);
}
// 執行優化
cout << "start optimization" << endl;
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.initializeOptimization();
optimizer.optimize(10); //迭代次數10次
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl;
// 輸出優化值
Eigen::Vector3d abc_estimate = v->estimate();
cout << "estimated model: " << abc_estimate.transpose() << endl;
return 0;
}
CMakeLists.txt:
cmake_minimum_required(VERSION 2.8)
project(ch6)
set(CMAKE_BUILD_TYPE Release)
set(CMAKE_CXX_FLAGS "-std=c++14 -O3")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
# OpenCV
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
# Ceres
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})
# g2o
find_package(G2O REQUIRED)
include_directories(${G2O_INCLUDE_DIRS})
# Eigen
include_directories("/usr/include/eigen3")
add_executable(gaussNewton gaussNewton.cpp)
target_link_libraries(gaussNewton ${OpenCV_LIBS})
add_executable(ceresCurveFitting ceresCurveFitting.cpp)
target_link_libraries(ceresCurveFitting ${OpenCV_LIBS} ${CERES_LIBRARIES})
add_executable(g2oCurveFitting g2oCurveFitting.cpp)
target_link_libraries(g2oCurveFitting ${OpenCV_LIBS} g2o_core g2o_stuff)
g2o需要新建一個cmake文件,建立一個FindG2O.cmake的文件:
# Find the header files
FIND_PATH(G2O_INCLUDE_DIR g2o/core/base_vertex.h
${G2O_ROOT}/include
$ENV{G2O_ROOT}/include
$ENV{G2O_ROOT}
/usr/local/include
/usr/include
/opt/local/include
/sw/local/include
/sw/include
NO_DEFAULT_PATH
)
# Macro to unify finding both the debug and release versions of the
# libraries; this is adapted from the OpenSceneGraph FIND_LIBRARY
# macro.
MACRO(FIND_G2O_LIBRARY MYLIBRARY MYLIBRARYNAME)
FIND_LIBRARY("${MYLIBRARY}_DEBUG"
NAMES "g2o_${MYLIBRARYNAME}_d"
PATHS
${G2O_ROOT}/lib/Debug
${G2O_ROOT}/lib
$ENV{G2O_ROOT}/lib/Debug
$ENV{G2O_ROOT}/lib
NO_DEFAULT_PATH
)
FIND_LIBRARY("${MYLIBRARY}_DEBUG"
NAMES "g2o_${MYLIBRARYNAME}_d"
PATHS
~/Library/Frameworks
/Library/Frameworks
/usr/local/lib
/usr/local/lib64
/usr/lib
/usr/lib64
/opt/local/lib
/sw/local/lib
/sw/lib
)
FIND_LIBRARY(${MYLIBRARY}
NAMES "g2o_${MYLIBRARYNAME}"
PATHS
${G2O_ROOT}/lib/Release
${G2O_ROOT}/lib
$ENV{G2O_ROOT}/lib/Release
$ENV{G2O_ROOT}/lib
NO_DEFAULT_PATH
)
FIND_LIBRARY(${MYLIBRARY}
NAMES "g2o_${MYLIBRARYNAME}"
PATHS
~/Library/Frameworks
/Library/Frameworks
/usr/local/lib
/usr/local/lib64
/usr/lib
/usr/lib64
/opt/local/lib
/sw/local/lib
/sw/lib
)
IF(NOT ${MYLIBRARY}_DEBUG)
IF(MYLIBRARY)
SET(${MYLIBRARY}_DEBUG ${MYLIBRARY})
ENDIF(MYLIBRARY)
ENDIF( NOT ${MYLIBRARY}_DEBUG)
ENDMACRO(FIND_G2O_LIBRARY LIBRARY LIBRARYNAME)
# Find the core elements
FIND_G2O_LIBRARY(G2O_STUFF_LIBRARY stuff)
FIND_G2O_LIBRARY(G2O_CORE_LIBRARY core)
# Find the CLI library
FIND_G2O_LIBRARY(G2O_CLI_LIBRARY cli)
# Find the pluggable solvers
FIND_G2O_LIBRARY(G2O_SOLVER_CHOLMOD solver_cholmod)
FIND_G2O_LIBRARY(G2O_SOLVER_CSPARSE solver_csparse)
FIND_G2O_LIBRARY(G2O_SOLVER_CSPARSE_EXTENSION csparse_extension)
FIND_G2O_LIBRARY(G2O_SOLVER_DENSE solver_dense)
FIND_G2O_LIBRARY(G2O_SOLVER_PCG solver_pcg)
FIND_G2O_LIBRARY(G2O_SOLVER_SLAM2D_LINEAR solver_slam2d_linear)
FIND_G2O_LIBRARY(G2O_SOLVER_STRUCTURE_ONLY solver_structure_only)
FIND_G2O_LIBRARY(G2O_SOLVER_EIGEN solver_eigen)
# Find the predefined types
FIND_G2O_LIBRARY(G2O_TYPES_DATA types_data)
FIND_G2O_LIBRARY(G2O_TYPES_ICP types_icp)
FIND_G2O_LIBRARY(G2O_TYPES_SBA types_sba)
FIND_G2O_LIBRARY(G2O_TYPES_SCLAM2D types_sclam2d)
FIND_G2O_LIBRARY(G2O_TYPES_SIM3 types_sim3)
FIND_G2O_LIBRARY(G2O_TYPES_SLAM2D types_slam2d)
FIND_G2O_LIBRARY(G2O_TYPES_SLAM3D types_slam3d)
# G2O solvers declared found if we found at least one solver
SET(G2O_SOLVERS_FOUND "NO")
IF(G2O_SOLVER_CHOLMOD OR G2O_SOLVER_CSPARSE OR G2O_SOLVER_DENSE OR G2O_SOLVER_PCG OR G2O_SOLVER_SLAM2D_LINEAR OR G2O_SOLVER_STRUCTURE_ONLY OR G2O_SOLVER_EIGEN)
SET(G2O_SOLVERS_FOUND "YES")
ENDIF(G2O_SOLVER_CHOLMOD OR G2O_SOLVER_CSPARSE OR G2O_SOLVER_DENSE OR G2O_SOLVER_PCG OR G2O_SOLVER_SLAM2D_LINEAR OR G2O_SOLVER_STRUCTURE_ONLY OR G2O_SOLVER_EIGEN)
# G2O itself declared found if we found the core libraries and at least one solver
SET(G2O_FOUND "NO")
IF(G2O_STUFF_LIBRARY AND G2O_CORE_LIBRARY AND G2O_INCLUDE_DIR AND G2O_SOLVERS_FOUND)
SET(G2O_FOUND "YES")
ENDIF(G2O_STUFF_LIBRARY AND G2O_CORE_LIBRARY AND G2O_INCLUDE_DIR AND G2O_SOLVERS_FOUND)
總結
以上是生活随笔為你收集整理的视觉十四讲:第六讲_g2o图优化的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: WR885N路由器如何安装路由器如何安装
- 下一篇: 怎么选电脑不后悔如何选一台好电脑