# define the minLossminLoss = 10000000# feature represents the dimensions of the featurefeature = 0# split represents the detail split valuesplit = 0# get current labelfor label_index in range(0,len(label_data)):current_label.append(label_data[label_index][index])# trans all featuresfor feature_index in range(0,feature_numbers):## current feature valuecurrent_value = []for sample_index in range(0,sample_numbers):current_value.append(train_data[sample_index][feature_index])L = 0## different split valueprint current_valuefor index in range(0,len(current_value)):R1 = []R2 = []y1 = 0y2 = 0for index_1 in range(0,len(current_value)):if current_value[index_1] < current_value[index]:R1.append(index_1)else:R2.append(index_1)## calculate the samples for first classsum_y = 0for index_R1 in R1:sum_y += current_label[index_R1]if len(R1) != 0:y1 = float(sum_y) / float(len(R1))else:y1 = 0## calculate the samples for second classsum_y = 0for index_R2 in R2:sum_y += current_label[index_R2]if len(R2) != 0:y2 = float(sum_y) / float(len(R2))else:y2 = 0## trans all samples to find minium loss and best splitfor index_2 in range(0,len(current_value)):if index_2 in R1:L += float((current_label[index_2]-y1))*float((current_label[index_2]-y1))else:L += float((current_label[index_2]-y2))*float((current_label[index_2]-y2))if L < minLoss:feature = feature_indexsplit = current_value[index]minLoss = Lprint "minLoss"print minLossprint "split"print splitprint "feature"print featurereturn minLoss,split,feature