tensorflow实现回归
生活随笔
收集整理的這篇文章主要介紹了
tensorflow实现回归
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
直線擬合:y=w*x+b
""" 回歸:直線擬合 """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt x_data=np.random.rand(100) y_data=x_data*5+1W=tf.Variable(0.) b=tf.Variable(0.) y_pred=W*x_data+bx=tf.placeholder(shape=None,dtype=tf.float32)loss=tf.reduce_mean(tf.square(y_data-y_pred)) optimizer=tf.train.GradientDescentOptimizer(0.3).minimize(loss) with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(100):sess.run(optimizer)if i %10==0:W1,b1=sess.run([W,b])print('step={},W={},b={}'.format(i,W1,b1))prediction=sess.run(y_pred,feed_dict={x:x_data})plt.scatter(x_data,y_data)plt.plot(x_data,prediction)plt.show()二,二次擬合 :y=w*x*x+b ,一層hidden layer,10個(gè)節(jié)點(diǎn),一個(gè)output一個(gè)節(jié)點(diǎn)
""" 回歸:二次擬合 """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #生成兩百個(gè)隨機(jī)點(diǎn) x_data=np.linspace(-1,1,200).reshape([-1,1]).astype(np.float32) noise=np.random.normal(loc=0.,scale=0.02,size=x_data.shape) y_data=np.square(x_data)+noisex=tf.placeholder(shape=[None,1],dtype=tf.float32) y=tf.placeholder(shape=[None,1],dtype=tf.float32) #hidden_layer W1=tf.Variable(tf.random_normal(shape=[1,10],stddev=tf.sqrt(2.)),dtype=tf.float32) b1=tf.Variable(tf.zeros(shape=[1,10]),dtype=tf.float32)#output_layer W2=tf.Variable(tf.random_normal(shape=[10,1],stddev=tf.sqrt(2./10)),dtype=tf.float32) b2=tf.Variable(tf.zeros(shape=[1,1]),dtype=tf.float32)Z1=tf.matmul(x_data,W1)+b1 A1=tf.nn.relu(Z1) y_pred=tf.matmul(A1,W2)+b2 # y_pred=tf.nn.relu(Z2)loss=tf.reduce_mean(tf.reduce_sum(tf.square(y-y_pred),axis=1)) optimizer=tf.train.GradientDescentOptimizer(0.2).minimize(loss)with tf.Session() as sess:sess.run(tf.global_variables_initializer())costs=[]for i in range(2000):cost,_=sess.run([loss,optimizer],feed_dict={x:x_data,y:y_data})if i%100==0:costs.append(cost)prediction = sess.run(y_pred, feed_dict={x: x_data})plt.scatter(x_data, y_data)plt.plot(x_data,prediction)plt.show()plt.plot(costs)plt.show()打印結(jié)果:
?
?
?
?
?
總結(jié)
以上是生活随笔為你收集整理的tensorflow实现回归的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: markdown下编辑latex数学公式
- 下一篇: JBU联合双边上采样