空间金字塔池化_回顾语义分割—DenseASPP (密集空洞空间金字塔池化)
引言
在分辨率大,分割目標尺度范圍廣的語句分割任務中,長距離的上下文信息以及不同尺度的信息對于分割結果十分重要。所以為了增大卷積但感受野,常常對提取的feature map進行池化以達到感受野增大的效果,同時通過跳躍連接來結合多尺度的信息。
存在的問題
由于池化是一種直接粗暴的方式,所以每一次池化后都會犧牲空間分辨率,多次池化后可能造成信息丟失而影響分割效果
提出的方法
論文地址
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8578486&tag=1?ieeexplore.ieee.org空洞卷積的出現就是為了解決在提升感受野的同時不損失信息,ASPP將不同空洞率的空洞卷積平行或者級聯堆疊來獲取多尺度的信息增益。
但是ASPP同樣存在問題,空洞卷積因為其機制每次計算只選取少量的像素點,采樣并不密集,大量信息被拋棄;當空洞率增加到一定程度(如dilation_rate>24),空洞卷積變得不那么有效甚至沒有效果。
所以deepmotion就提出了DenseASPP,將DenseNet中的密集連接思想應用到了ASPP中,其結構如下圖
更直觀一點
每一層空洞卷積層的輸入都是 前面所有卷積層的輸出和輸入的feature map的拼接
空洞卷積的卷積核大小計算公式如下
,其中K為原始卷積核大小,d為空洞率兩個卷積疊加后的卷積核大小計算公式如下
簡單起見,討論一維的情況
ASPP中,采樣點數為3,其感受野
DenseASPP中,空洞率d=6的卷積層的輸入是feature map和d=3的輸出
采樣點數為7,其感受野
從上面看出增加了密集連接后,采樣點數增加了,感受野也增加了。
思考
通過不同空洞率的空洞卷積來獲取不同尺度的特征,那么怎么選取不同的空洞率的組合呢?
根據paper中設置,組合 3,6,12,18,24 五個數字,最后使感受野接近feature map 的大小。
For example, the resolution of Cityscapes [4] is 2048×1024, and the last feature map of our segmentation network is 256 × 128. DenseASPP(6, 12, 18, 24) covers a feature map size of 122,and DenseASPP(3, 6, 12, 18, 24) covers a larger feature map size of 128.文中的feature map大小為256*128,使用(6,12,18,24)的組合最后的感受野為
文中是122,可能是個計算失誤,因為作者想要檢測大尺寸的物,所以讓感受野達到半張圖的大小,但是我們有時候不需要那么大感受野,就可以選擇適合自己的組合。
總結
以上是生活随笔為你收集整理的空间金字塔池化_回顾语义分割—DenseASPP (密集空洞空间金字塔池化)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: python灰度图像为什么显示成彩色的_
- 下一篇: python指定进程断网_python通