抽象代数入门(一)
一、群論
幺半群(monoid)
之前看老師講的叫Abelian monoid(阿貝爾幺半群),但是搜不到。
A monoid is a set closed under an associative binary operation and has an identity element? such that?.
Binary operation(二元運(yùn)算): f(x, y) an operation between two quantities or expressions x and y.
An binary operation on a nonempty set? is a map of?.such that:
常用的二元運(yùn)算有:addition , substraction , multiplication , division .
不同于群(group),幺半群中的元素不一定有逆。
?
?
群(group)
也叫Abelian group.在 monoid 的基礎(chǔ)上多了一個(gè)條件:
Every element has an inverse:?, where e is the identity element.
例子:
Every vector space? is Abelian group.?
. 這里 0 是單位元素(identity element).
二、環(huán)論(ring)
A ring in the mathmatical sense is a set? together with two binary operations?(分表加法和乘法). 滿足以下條件:
定義一個(gè)環(huán)至少要滿足前五個(gè)條件,但一般會(huì)加上第六個(gè)條件變成associative ring. 沒(méi)有滿足第六個(gè)條件的叫nonassociative ring.
滿足所有條件的就稱為域(field).不滿足 7 乘法交換的環(huán)叫做 division algebra(可除代數(shù))也叫 skew field(非交換域).
?
?
?
?
總結(jié)
- 上一篇: 5.1 Lilypond五线谱
- 下一篇: Java_摩尔斯密码 非常详细