hive load data外部表报错_生产SparkSQL如何读写本地外部数据源及排错
https://spark-packages.org/里有很多third-party數據源的package,spark把包加載進來就可以使用了
csv格式在spark2.0版本之后是內置的,2.0之前屬于第三方數據源
一、讀取本地外部數據源
1.直接讀取一個json文件
[hadoop@hadoop000 bin]$ ./spark-shell --master local[2] --jars ~/software/mysql-connector-java-5.1.27.jarscala> spark.read.load("file:///home/hadoop/app/spark-2.3.1-bin-2.6.0-cdh5.7.0/examples/src/main/resources/people.json").show
運行報錯:
Caused by: java.lang.RuntimeException: file:/home/hadoop/app/spark-2.3.1-bin-2.6.0-cdh5.7.0/examples/src/main/resources/people.json is not a Parquet file. expected magic number at tail [80, 65, 82, 49] but found [49, 57, 125, 10]at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:476)
at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:445)
at org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:421)
at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$readParquetFootersInParallel$1.apply(ParquetFileFormat.scala:519)
... 32 more
查看load方法的源碼:
/*** Loads input in as a `DataFrame`, for data sources that require a path (e.g. data backed by
* a local or distributed file system).
*
* @since 1.4.0
*/
def load(path: String): DataFrame = {
option("path", path).load(Seq.empty: _*) // force invocation of `load(...varargs...)`
}
---------------------------------------------------------
/**
* Loads input in as a `DataFrame`, for data sources that support multiple paths.
* Only works if the source is a HadoopFsRelationProvider.
*
* @since 1.6.0
*/
@scala.annotation.varargs
def load(paths: String*): DataFrame = {
if (source.toLowerCase(Locale.ROOT) == DDLUtils.HIVE_PROVIDER) {
throw new AnalysisException("Hive data source can only be used with tables, you can not " +
"read files of Hive data source directly.")
}
val cls = DataSource.lookupDataSource(source, sparkSession.sessionState.conf)
if (classOf[DataSourceV2].isAssignableFrom(cls)) {
val ds = cls.newInstance()
val options = new DataSourceOptions((extraOptions ++
DataSourceV2Utils.extractSessionConfigs(
ds = ds.asInstanceOf[DataSourceV2],
conf = sparkSession.sessionState.conf)).asJava)
// Streaming also uses the data source V2 API. So it may be that the data source implements
// v2, but has no v2 implementation for batch reads. In that case, we fall back to loading
// the dataframe as a v1 source.
val reader = (ds, userSpecifiedSchema) match {
case (ds: ReadSupportWithSchema, Some(schema)) =>
ds.createReader(schema, options)
case (ds: ReadSupport, None) =>
ds.createReader(options)
case (ds: ReadSupportWithSchema, None) =>
throw new AnalysisException(s"A schema needs to be specified when using $ds.")
case (ds: ReadSupport, Some(schema)) =>
val reader = ds.createReader(options)
if (reader.readSchema() != schema) {
throw new AnalysisException(s"$ds does not allow user-specified schemas.")
}
reader
case _ => null // fall back to v1
}
if (reader == null) {
loadV1Source(paths: _*)
} else {
Dataset.ofRows(sparkSession, DataSourceV2Relation(reader))
}
} else {
loadV1Source(paths: _*)
}
}
private def loadV1Source(paths: String*) = {
// Code path for data source v1.
sparkSession.baseRelationToDataFrame(
DataSource.apply(
sparkSession,
paths = paths,
userSpecifiedSchema = userSpecifiedSchema,
className = source,
options = extraOptions.toMap).resolveRelation())
}
------------------------------------------------------
private var source: String = sparkSession.sessionState.conf.defaultDataSourceName
-------------------------------------------------------
def defaultDataSourceName: String = getConf(DEFAULT_DATA_SOURCE_NAME)
--------------------------------------------------------
// This is used to set the default data source
val DEFAULT_DATA_SOURCE_NAME = buildConf("spark.sql.sources.default")
.doc("The default data source to use in input/output.")
.stringConf
.createWithDefault("parquet")
從源碼中可以看出,如果不指定format,load默認讀取的是parquet文件
scala> val users = spark.read.load("file:///home/hadoop/app/spark-2.3.1-bin-2.6.0-cdh5.7.0/examples/src/main/resources/users.parquet")scala> users.show()
+------+--------------+----------------+
| name|favorite_color|favorite_numbers|
+------+--------------+----------------+
|Alyssa| null| [3, 9, 15, 20]|
| Ben| red| []|
+------+--------------+----------------+
讀取其他格式的文件,必須通過format指定文件格式,如下:
//windows idea環境下val df1 = spark.read.format("json").option("timestampFormat", "yyyy/MM/dd HH:mm:ss ZZ").load("hdfs://192.168.137.141:9000/data/people.json")
df1.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
option("timestampFormat", "yyyy/MM/dd HH:mm:ss ZZ")必須帶上,不然報錯
Exception in thread "main" java.lang.IllegalArgumentException: Illegal pattern component: XXX2.讀取CSV格式文件
//源文件內容如下:[hadoop@hadoop001 ~]$ hadoop fs -text /data/people.csv
name;age;job
Jorge;30;Developer
Bob;32;Developer
//windows idea環境下
val df2 = spark.read.format("csv")
.option("timestampFormat", "yyyy/MM/dd HH:mm:ss ZZ")
.option("sep",";")
.option("header","true") //use first line of all files as header
.option("inferSchema","true")
.load("hdfs://192.168.137.141:9000/data/people.csv")
df2.show()
df2.printSchema()
//輸出結果:
+-----+---+---------+
| name|age| job|
+-----+---+---------+
|Jorge| 30|Developer|
| Bob| 32|Developer|
+-----+---+---------+
root
|-- name: string (nullable = true)
|-- age: integer (nullable = true)
|-- job: string (nullable = true)
-----------------------------------------------------------
//如果不指定option("sep",";")
+------------------+
| name;age;job|
+------------------+
|Jorge;30;Developer|
| Bob;32;Developer|
+------------------+
//如果不指定option("header","true")
+-----+---+---------+
| _c0|_c1| _c2|
+-----+---+---------+
| name|age| job|
|Jorge| 30|Developer|
| Bob| 32|Developer|
+-----+---+---------+
讀取csv格式文件還可以自定義schema
val peopleschema = StructType(Array(StructField("hlwname",StringType,true),
StructField("hlwage",IntegerType,true),
StructField("hlwjob",StringType,true)))
val df2 = spark.read.format("csv").option("timestampFormat", "yyyy/MM/dd HH:mm:ss ZZ").option("sep",";")
.option("header","true")
.schema(peopleschema)
.load("hdfs://192.168.137.141:9000/data/people.csv")
//打印測試
df2.show()
df2.printSchema()
輸出結果:
+-------+------+---------+
|hlwname|hlwage| hlwjob|
+-------+------+---------+
| Jorge| 30|Developer|
| Bob| 32|Developer|
+-------+------+---------+
root
|-- hlwname: string (nullable = true)
|-- hlwage: integer (nullable = true)
|-- hlwjob: string (nullable = true)
二、將讀取的文件以其他格式寫出
//將上文讀取的users.parquet以json格式寫出scala> users.select("name","favorite_color").write.format("json").save("file:///home/hadoop/tmp/parquet2json/")
[hadoop@hadoop000 ~]$ cd /home/hadoop/tmp/parquet2json
[hadoop@hadoop000 parquet2json]$ ll
total 4
-rw-r--r--. 1 hadoop hadoop 56 Sep 24 10:15 part-00000-dfbd9ba5-598f-4e0c-8e81-df85120333db-c000.json
-rw-r--r--. 1 hadoop hadoop 0 Sep 24 10:15 _SUCCESS
[hadoop@hadoop000 parquet2json]$ cat part-00000-dfbd9ba5-598f-4e0c-8e81-df85120333db-c000.json
{"name":"Alyssa"}
{"name":"Ben","favorite_color":"red"}
//將上文讀取的people.json以csv格式寫出
df1.write.format("csv")
.mode("overwrite")
.option("timestampFormat", "yyyy/MM/dd HH:mm:ss ZZ")
.save("hdfs://192.168.137.141:9000/data/formatconverttest/")
------------------------------------------
[hadoop@hadoop001 ~]$ hadoop fs -text /data/formatconverttest/part-00000-6fd65eff-d0d3-43e5-9549-2b11bc3ca9de-c000.csv
,Michael
30,Andy
19,Justin
//發現若沒有.option("header","true"),寫出的csv丟失了首行的age,name信息
//若不指定.option("sep",";"),默認逗號為分隔符
此操作的目的在于學會類型轉換,生產上最開始進來的數據大多都是text,json等行式存儲的文件,一般都要轉成ORC,parquet列式存儲的文件,加上壓縮,能把文件大小減小到10%左右,大幅度減小IO和數據處理量,提高性能
此時如果再執行一次save,路徑不變,則會報錯:
org.apache.spark.sql.AnalysisException: path file:/home/hadoop/tmp/parquet2json already exists.;
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:109)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104)
.........................................................
可以通過設置savemode來解決這個問題
默認是errorifexists
scala> users.select("name","favorite_color").write.format("json").mode("overwrite").save("file:///home/hadoop/tmp/parquet2json/")作者:若澤數據—白面葫蘆娃92?
原文:https://www.jianshu.com/p/6fde69ea56bc
回歸原創文章:
若澤數據2018視頻集合
Flink生產最佳實踐,2018年12月剛出爐
我去過端午、國慶生產項目線下班,你呢?
2019元旦-線下項目第11期圓滿結束
大數據生產預警平臺項目之文章匯總
學習大數據的路上,別忘了多給自己鼓掌
明年畢業的我,拿了大數據30萬的offer!
最全的Flink部署及開發案例
我司Kafka+Flink+MySQL生產完整案例代碼
代碼 | Spark讀取mongoDB數據寫入Hive普通表和分區表
我司Spark遷移Hive數據到MongoDB生產案例代碼
2019高級班&線下班報名咨詢請加
創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎總結
以上是生活随笔為你收集整理的hive load data外部表报错_生产SparkSQL如何读写本地外部数据源及排错的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: seata 如何开启tcc事物_分布式事
- 下一篇: python中定义变量为啥要用下划线_关