Almost Arithmetical Progression
Description
Gena loves sequences of numbers. Recently, he has discovered a new type of sequences which he called an almost arithmetical progression. A sequence is an?almost arithmetical progression, if its elements can be represented as:
- a1?=?p, where?p?is some integer;
- ai?=?ai?-?1?+?(?-?1)i?+?1·q(i?>?1), where?q?is some integer.
Right now Gena has a piece of paper with sequence?b, consisting of?n?integers. Help Gena, find there the longest subsequence of integers that is an almost arithmetical progression.
Sequence?s1,??s2,??...,??sk?is a subsequence of sequence?b1,??b2,??...,??bn, if there is such increasing sequence of indexesi1,?i2,?...,?ik(1??≤??i1??<??i2??<?... ??<??ik??≤??n), that?bij??=??sj. In other words, sequence?s?can be obtained from?b?by crossing out some elements.
Input
The first line contains integer?n(1?≤?n?≤?4000). The next line contains?n?integers?b1,?b2,?...,?bn(1?≤?bi?≤?106).
Output
Print a single integer — the length of the required longest subsequence.
Sample Input
Input 2 3 5 Output 2 Input 4 10 20 10 30 Output 3Hint
In the first test the sequence actually is the suitable subsequence.
In the second test the following subsequence fits:?10,?20,?10.
/*求最長的子序列,滿足隔位的兩個數相等*/
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 4000 + 10;
int n;
int b[MAXN];
int dp[MAXN][MAXN];//定義狀態dp[i][j]代表以第i個數為末尾,第j個數為倒數第二個的情況下的最長子序列。
int main()
{
? ? while (scanf("%d", &n) == 1)
? ? {
? ? ? for (int i = 1; i <= n; ++i)
? ? {
? ? ? ? scanf("%d", &b[i]);
? ? }
? ? int ret = 0;
? ? dp[0][0] = 0;
? ? for (int j = 1; j <= n; ++j)
? ? {
? ? ? ? for (int i = 0, last = 0; i < j; ++i)
? ? ? ? {
? ? ? ? ? ? dp[i][j] = dp[last][i] + 1;
? ? ? ? ? ? if (b[i] == b[j])
? ? ? ? ? ? {
? ? ? ? ? ? ? ? last = i;
? ? ? ? ? ? }
? ? ? ? ? ? ret = max(ret, dp[i][j]);
? ? ? ? }
? ? }
? ? printf("%d\n", ret);
? ? }
? ? return 0;
}
總結
以上是生活随笔為你收集整理的Almost Arithmetical Progression的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ModBus协议寄存器
- 下一篇: html之特殊字符表