prim算法 求最小生成树
最小生成樹Prim算法理解
標簽:?Prim算法理解最小生成樹Prim 2014-08-16 18:49?18482人閱讀?評論(5)?收藏?舉報版權聲明:本文為博主原創(chuàng)文章,未經博主允許不得轉載。
MST(Minimum Spanning Tree,最小生成樹)問題有兩種通用的解法,Prim算法就是其中之一,它是從點的方面考慮構建一顆MST,大致思想是:設圖G頂點集合為U,首先任意選擇圖G中的一點作為起始點a,將該點加入集合V,再從集合U-V中找到另一點b使得點b到V中任意一點的權值最小,此時將b點也加入集合V;以此類推,現(xiàn)在的集合V={a,b},再從集合U-V中找到另一點c使得點c到V中任意一點的權值最小,此時將c點加入集合V,直至所有頂點全部被加入V,此時就構建出了一顆MST。因為有N個頂點,所以該MST就有N-1條邊,每一次向集合V中加入一個點,就意味著找到一條MST的邊。
用圖示和代碼說明:
初始狀態(tài):
設置2個數(shù)據(jù)結構:
lowcost[i]:表示以i為終點的邊的最小權值,當lowcost[i]=0說明以i為終點的邊的最小權值=0,也就是表示i點加入了MST
mst[i]:表示對應lowcost[i]的起點,即說明邊<mst[i],i>是MST的一條邊,當mst[i]=0表示起點i加入MST
我們假設V1是起始點,進行初始化(*代表無限大,即無通路):
lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=*,lowcost[6]=*
mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有點默認起點是V1)
明顯看出,以V3為終點的邊的權值最小=1,所以邊<mst[3],3>=1加入MST
此時,因為點V3的加入,需要更新lowcost數(shù)組和mst數(shù)組:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4
mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3
明顯看出,以V6為終點的邊的權值最小=4,所以邊<mst[6],6>=4加入MST
此時,因為點V6的加入,需要更新lowcost數(shù)組和mst數(shù)組:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0
明顯看出,以V4為終點的邊的權值最小=2,所以邊<mst[4],4>=4加入MST
此時,因為點V4的加入,需要更新lowcost數(shù)組和mst數(shù)組:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0
明顯看出,以V2為終點的邊的權值最小=5,所以邊<mst[2],2>=5加入MST
此時,因為點V2的加入,需要更新lowcost數(shù)組和mst數(shù)組:
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0
很明顯,以V5為終點的邊的權值最小=3,所以邊<mst[5],5>=3加入MST
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0
至此,MST構建成功,如圖所示:
根據(jù)上面的過程,可以容易的寫出具體實現(xiàn)代碼如下(cpp):
[cpp]?view plaincopy print?Input:
[plain]?view plaincopy print?
Output:
[plain]?view plaincopy print?
- 上一篇Git詳解之九 Git內部原理
- 下一篇poj_1789?
總結
以上是生活随笔為你收集整理的prim算法 求最小生成树的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: html 中 标签里面的id 和 nam
- 下一篇: C++之带有默认参数值的构造函数