Merge Sort及其对一类问题的应用
1.歸并排序 O(nlogn) stable
#include <iostream> #include <vector> using namespace std;void merge(vector<int>& arr, int l, int mid, int r){int n1 = mid - l + 1, n2 = r - mid;vector<int> left(n1);vector<int> right(n2);for(int i = 0; i < n1; ++i) left[i] = arr[l + i];for(int i = 0; i < n2; ++i) right[i] = arr[mid + 1 + i];int i = 0, j = 0, k = l;while(i < n1 && j < n2){if(left[i] <= right[j]) arr[k++] = left[i++];else arr[k++] = right[j++];}while(i < n1) arr[k++] = left[i++];while(j < n2) arr[k++] = right[j++]; }void mergeSort(vector<int>& arr, int l, int r){if(l < r){int mid = (l + r) / 2;mergeSort(arr, l, mid);mergeSort(arr, mid + 1, r);merge(arr, l, mid, r);} }int main(){vector<int> input = {3, 4, 6, 1, 9, 5, 2, 7, 0, 8};mergeSort(input, 0, input.size() - 1);for(int i : input)cout << i << " ";return 0; }2.數(shù)組中逆序?qū)€數(shù)Count Inversions
#include <iostream> #include <vector> using namespace std;int merge(vector<int>& arr, int l, int mid, int r);int mergeSort(vector<int>& arr, int l, int r){int invCount = 0;if(l < r){int mid = (l + r) / 2;invCount = mergeSort(arr, l, mid);invCount += mergeSort(arr, mid + 1, r);invCount += merge(arr, l, mid, r); }return invCount; }int merge(vector<int>& arr, int l, int mid, int r){int n1 = mid - l + 1, n2 = r - mid;vector<int> left(n1);vector<int> right(n2);for(int i = 0; i < n1; ++i) left[i] = arr[l + i];for(int i = 0; i < n2; ++i) right[i] = arr[mid + 1 + i];int i = 0, j = 0, k = l;int invCount = 0;while(i < n1 && j < n2){if(left[i] > right[j]){invCount += mid - i + 1;arr[k++] = right[j++];}elsearr[k++] = left[i++];}while(i < n1) arr[k++] = left[i++];while(j < n2) arr[k++] = right[j++];return invCount; }int main(){vector<int> input = {1, 3, 5, 2, 4};int ans = mergeSort(input, 0, input.size() - 1);for(int i : input)cout << i << " ";cout << endl;cout << ans;return 0; }3.Leetcode 493 Reverse Pairs
Given an array nums, we call (i, j) an important reverse pair if i < j and nums[i] > 2 * nums[j]. You need to return the number of important reverse pairs in the given array.
class Solution { public:vector<int> helper;int reversePairs(vector<int>& nums) {helper.resize(nums.size());return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int s, int e){if(s >= e) return 0;int mid = s + (e - s) / 2;int cnt = mergeSort(nums, s, mid) + mergeSort(nums, mid + 1, e);for(int i = s, j = mid + 1; i <= mid; ++i){while(j <= e && nums[i] / 2.0 > nums[j])j++;cnt += j - (mid + 1);}merge(nums, s, mid, e);return cnt;}void merge(vector<int>& nums, int s, int mid, int e){for(int i = s; i <= e; ++i) helper[i] = nums[i];int p1 = s;int p2 = mid + 1;int i = s;while(p1 <= mid || p2 <= e){ //注意這個merge的邏輯if(p1 > mid || p2 <= e && helper[p1] >= helper[p2])nums[i++] = helper[p2++];elsenums[i++] = helper[p1++];}}};4.Leetcode 315 Count? of Smaller Numbers After self
You are given an integer array nums and you have to return a new counts array. The counts array has the porperty where counts[i] is the number o f smaller elements to the right of nums[i].
class Solution { public:unordered_map<int, int> count;vector<int> helper;vector<int> countSmaller(vector<int>& nums) {vector<int> numsCopy = nums;helper.resize(nums.size());vector<int> res(nums.size());mergeSort(nums, 0, nums.size() - 1);for(int i = 0; i < nums.size(); ++i){res[i] = count[numsCopy[i]]; }return res;}void mergeSort(vector<int>& nums, int s, int e){if(s < e){int mid = s + (e - s) / 2;mergeSort(nums, s, mid);mergeSort(nums, mid + 1, e);for(int i = s, j = mid + 1; i <= mid; ++i){while(j <= e && nums[i] > nums[j])j++;count[nums[i]] += j - (mid + 1);}merge(nums, s, mid, e);}}void merge(vector<int>& nums, int s, int mid, int e){for(int i = s; i <= e; ++i) helper[i] = nums[i];int p1 = s;int p2 = mid + 1;int i = s;while(p1 <= mid || p2 <= e){if(p1 > mid || p2 <= e && helper[p1] >= helper[p2]) nums[i++] = helper[p2++];else nums[i++] = helper[p1++];}} };5.Count of Range Sum
Given an interger array nums, return the number of range sums that lie in [lower, upper] inclusive. Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i <= j), inclusive.
Note: A naive algorithm of $O(n_2)$ is trivial. You MUST do better than that.
?
?
class Solution { public:int countRangeSum(vector<int>& nums, int lower, int upper) {int size = nums.size();if(size == 0) return 0;vector<long> sums(size + 1, 0);for(int i = 0; i < size; ++i)sums[i + 1] = sums[i] + nums[i];return help(sums, 0, size + 1, lower, upper);}int help(vector<long>& sums, int start, int end, int lower, int upper){if(end - start <= 1) return 0;int mid = (start + end) / 2;int cnt = help(sums, start, mid, lower, upper) + help(sums, mid, end, lower, upper);int m = mid, n = mid, t = mid, len = 0;vector<long> cache(end - start, 0);for(int i = start, s = 0; i < mid; ++i, ++s){while(m < end && sums[m] - sums[i] < lower) ++m;while(n < end && sums[n] - sums[i] <= upper) ++n;cnt += n - m;while(t < end && sums[t] < sums[i]) cache[s++] = sums[t++];cache[s] = sums[i];len = s;}for(int i = 0; i <= len; ++i) sums[start + i] = cache[i];return cnt;} };?
轉(zhuǎn)載于:https://www.cnblogs.com/betaa/p/11438599.html
總結(jié)
以上是生活随笔為你收集整理的Merge Sort及其对一类问题的应用的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 强制关闭虚拟机后问题+解决
- 下一篇: Three-way Partition