多项式多点求值
給定一個多項式和m個x,求相應的y
我們把需要求值的點均分成兩個集合S1,S2,構造兩個多項式P1,P2,使得這兩個多項式分別為這兩個集合的零點。則多項式A%P1對于S1滿足A%P1對S1內元素求值和A相同,A%P2對于S2內求值和A相同,而它們次數都是n/2,分治遞歸下去繼續求值即可。
由于多項式取模的數組版還不會寫,這里借用的以前的vector版,有非常大的優化空間(vector真香)
#include <bits/stdc++.h> using namespace std;const int p = 998244353;int qpow(int x, int y) {int res = 1;while (y > 0){if (y & 1)res = 1LL * res * x % p;x = 1LL * x * x % p;y >>= 1;}return res; }void FNTT(vector<int> &A, int len, int flag) {A.resize(len);int *r = new int[len];r[0] = 0;for (int i = 0; i < len; i++)r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));for (int i = 0; i < len; i++)if (i < r[i])swap(A[i], A[r[i]]);int gn, g, t, A0, A1;for (int i = 1; i < len; i <<= 1){gn = qpow(3, (p - 1) / (i * 2));for (int j = 0; j < len; j += (i << 1)){g = 1;A0 = j;A1 = A0 + i;for (int k = 0; k < i; k++, A0++, A1++, g = (1LL * g * gn) % p){t = (1LL * A[A1] * g) % p;A[A1] = ((A[A0] - t) % p + p) % p;A[A0] = (A[A0] + t) % p;}}}if (flag == -1){reverse(A.begin() + 1, A.end());int inv = qpow(len, p - 2);for (int i = 0; i < len; i++)A[i] = 1LL * A[i] * inv % p;}delete []r; }vector<int> operator*(vector<int> a, vector<int> b) {int len = 1;int sz = a.size() + b.size() - 1;while (len <= sz) len <<= 1;FNTT(a, len, 1);FNTT(b, len, 1);vector<int> res;res.resize(len);for (int i = 0; i < len; i++)res[i] = 1LL * a[i] * b[i] % p;FNTT(res, len, -1);res.resize(sz);return res; }vector<int> poly_inv(vector<int> a) {if (a.size() == 1){a[0] = qpow(a[0], p - 2);return a;}int n = a.size(), newsz = (n + 1) >> 1;vector<int> b(a);b.resize(newsz);b = poly_inv(b);int len = 1;while (len <= (n << 1)) len <<= 1;vector<int> c(a);FNTT(a, len, 1);FNTT(b, len, 1);for (int i = 0; i < len; i++)a[i] = ((1LL * b[i] * (2 - 1LL * a[i] * b[i] % p)) % p + p) % p;FNTT(a, len, -1);a.resize(n);return a; }vector<int> poly_r(vector<int> a) {reverse(a.begin(), a.end());return a; }void div(vector<int> f, vector<int> g, vector<int> &q, vector<int> &r) {int n = f.size() - 1, m = g.size() - 1;vector<int> gr = poly_r(g);gr.resize(n - m + 1);q = poly_r(f) * poly_inv(gr);q.resize(n - m + 1);q = poly_r(q);vector<int> gq = g * q;r.resize(m);gq.resize(m);f.resize(m);for (int i = 0; i < m; i++)r[i] = ((f[i] - gq[i]) % p + p) % p; }int n, m; vector<int> f, tmp[1000010]; int a[100010], res[100010], le[1000010], re[1000010], tot;vector<int> prework(int l, int r) {int id = ++tot;if (l == r){vector<int> res;res.push_back(p - a[l]);res.push_back(1);tmp[id] = res;return res;}int mid = (l + r) / 2;le[id] = tot + 1;vector<int> res = prework(l, mid);re[id] = tot + 1;res = res * prework(mid + 1, r);return tmp[id] = res; }void work(int l, int r, vector<int> sb) {int id = ++tot;if (l == r){int tmp = 1;for (int i = 0; i < (int)sb.size(); i++)res[l] = (res[l] + tmp * sb[i]) % p, tmp = tmp * (long long)a[l] % p;return;}vector<int> fl = tmp[le[id]], fr = tmp[re[id]];vector<int> tmp1, rel, rer;div(sb, fl, tmp1, rel);div(sb, fr, tmp1, rer);int mid = (l + r) / 2;work(l, mid, rel);work(mid + 1, r, rer); }int main() {scanf("%d%d", &n, &m); f.resize(n + 1);for (int i = 0; i <= n; i++) scanf("%d", &f[i]);for (int i = 1; i <= m; i++) scanf("%d", &a[i]);prework(1, max(n, m));tot = 0;work(1, max(n, m), f);for (int i = 1; i <= m; i++) printf("%d\n", res[i]);return 0; }轉載于:https://www.cnblogs.com/oier/p/10403514.html
總結
- 上一篇: java byte
- 下一篇: python 中的爬虫· scrapy框