深度学习-Tensorflow2.2-tf.data输入模块{2}-tf.data输入实例-10
生活随笔
收集整理的這篇文章主要介紹了
深度学习-Tensorflow2.2-tf.data输入模块{2}-tf.data输入实例-10
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
# -*- coding: utf-8 -*-
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告級別,不顯示警告
import tensorflow as tf# 下載數據集并劃分為訓練集和測試集
(train_images,train_lables),(test_images,test_labels) = tf.keras.datasets.mnist.load_data()
# 歸一化
train_images = train_images/255
test_images = test_images/255
print(train_images.shape)
# 建立模型創建dataset
ds_train_img = tf.data.Dataset.from_tensor_slices(train_images)
print(ds_train_img)
# -*- coding: utf-8 -*-
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告級別,不顯示警告
import tensorflow as tf# 下載數據集并劃分為訓練集和測試集
(train_images,train_lables),(test_images,test_labels) = tf.keras.datasets.mnist.load_data()
# 歸一化
train_images = train_images/255
test_images = test_images/255
print(train_images.shape)
# 創建dataset
ds_train_img = tf.data.Dataset.from_tensor_slices(train_images)
print(ds_train_img)
ds_train_lab = tf.data.Dataset.from_tensor_slices(train_lables)
print(ds_train_lab)
# 合并(元組)
ds_train = tf.data.Dataset.zip((ds_train_img,ds_train_lab))
print(ds_train)
# 取出其中10000個組件進行亂序,無限重復每次輸出64張圖片
ds_train = ds_train.shuffle(10000).repeat().batch(64)# 建立模型
model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(28,28)),tf.keras.layers.Dense(128,activation="relu"),tf.keras.layers.Dense(10,activation="softmax")
])
# 編譯模型
model.compile(optimizer="adam",loss="sparse_categorical_crossentropy",metrics=["accuracy"])
steps_per_epochs = train_images.shape[0]//64 # 我們上面是無限循環迭代,定義每一個epochs訓練多少步
# 訓練模型 一共訓練5次每次訓練 train_images.shape[0]//64個組件
model.fit(ds_train,epochs=5,steps_per_epoch=steps_per_epochs)
# -*- coding: utf-8 -*-
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告級別,不顯示警告
import tensorflow as tf# 下載數據集并劃分為訓練集和測試集
(train_images,train_lables),(test_images,test_labels) = tf.keras.datasets.mnist.load_data()
# 歸一化
train_images = train_images/255
test_images = test_images/255
# print(train_images.shape)
# 創建dataset
ds_train_img = tf.data.Dataset.from_tensor_slices(train_images)
# print(ds_train_img)
ds_train_lab = tf.data.Dataset.from_tensor_slices(train_lables)
# print(ds_train_lab)# 合并(元組形式放入)
ds_train = tf.data.Dataset.zip((ds_train_img,ds_train_lab))# print(ds_train)
# 取出其中10000個組件進行亂序,無限重復每次輸出64張圖片
ds_train = ds_train.shuffle(10000).repeat().batch(64)
ds_test = tf.data.Dataset.from_tensor_slices((test_images,test_labels))# 創建test數據集放入一個元組
ds_test = ds_test.batch(64)# 每次輸出64個組件
# 建立模型
model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(28,28)),tf.keras.layers.Dense(128,activation="relu"),tf.keras.layers.Dense(10,activation="softmax")
])
# 編譯模型
model.compile(optimizer="adam",loss="sparse_categorical_crossentropy",metrics=["accuracy"])
steps_per_epochs = train_images.shape[0]//64 # 我們上面是無限循環迭代,定義每一個epochs訓練多少步
# 訓練模型 一共訓練5次每次訓練 train_images.shape[0]//64個組件/測試數據ds_test 每次測試10000整除64個組件
model.fit(ds_train,epochs=5,steps_per_epoch=steps_per_epochs,validation_data=ds_test,validation_steps=10000//64)
總結
以上是生活随笔為你收集整理的深度学习-Tensorflow2.2-tf.data输入模块{2}-tf.data输入实例-10的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 深度学习-Tensorflow2.2-t
- 下一篇: 深度学习-Tensorflow2.2-卷