Apache Flink 零基础入门(十五)Flink DataStream编程(如何自定义DataSource)
數據源可以通過StreamExecutionEnvironment.addSource(sourceFunction)方式來創建,Flink也提供了一些內置的數據源方便使用,例如readTextFile(path) readFile(),當然,也可以寫一個自定義的數據源(可以通過實現SourceFunction方法,但是無法并行執行。或者實現可以并行實現的接口ParallelSourceFunction或者繼承RichParallelSourceFunction)
入門
首先做一個簡單入門,建立一個DataStreamSourceApp
Scala
object DataStreamSourceApp {def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironmentsocketFunction(env)env.execute("DataStreamSourceApp")}def socketFunction(env: StreamExecutionEnvironment): Unit = {val data=env.socketTextStream("192.168.152.45", 9999)data.print()} }這個方法將會從socket中讀取數據,因此我們需要在192.168.152.45中開啟服務:
nc -lk 9999然后運行DataStreamSourceApp,在服務器上輸入:
iie4bu@swarm-manager:~$ nc -lk 9999 apache flink spark在控制臺中也會輸出:
3> apache 4> flink 1> spark前面的 341表示的是并行度。可以通過設置setParallelism來操作:
data.print().setParallelism(1)Java
public class JavaDataStreamSourceApp {public static void main(String[] args) throws Exception {StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();socketFunction(environment);environment.execute("JavaDataStreamSourceApp");}public static void socketFunction(StreamExecutionEnvironment executionEnvironment){DataStreamSource<String> data = executionEnvironment.socketTextStream("192.168.152.45", 9999);data.print().setParallelism(1);} }自定義添加數據源方式
Scala
實現SourceFunction接口
這種方式不能并行處理。
新建一個自定義數據源
class CustomNonParallelSourceFunction extends SourceFunction[Long]{var count=1Lvar isRunning = trueoverride def run(ctx: SourceFunction.SourceContext[Long]): Unit = {while (isRunning){ctx.collect(count)count+=1Thread.sleep(1000)}}override def cancel(): Unit = {isRunning = false} }這個方法首先定義一個初始值count=1L,然后執行的run方法,方法主要是輸出count,并且執行加一操作,當執行cancel方法時結束。調用方法如下:
def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironment// socketFunction(env)nonParallelSourceFunction(env)env.execute("DataStreamSourceApp")}def nonParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {val data=env.addSource(new CustomNonParallelSourceFunction())data.print()}輸出結果就是控制臺一直輸出count值。
無法設置并行度,除非設置并行度是1.
val data=env.addSource(new CustomNonParallelSourceFunction()).setParallelism(3)那么控制臺報錯:
Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel sourceat org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55)at com.vincent.course05.DataStreamSourceApp$.nonParallelSourceFunction(DataStreamSourceApp.scala:16)at com.vincent.course05.DataStreamSourceApp$.main(DataStreamSourceApp.scala:11)at com.vincent.course05.DataStreamSourceApp.main(DataStreamSourceApp.scala)繼承ParallelSourceFunction方法
import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction}class CustomParallelSourceFunction extends ParallelSourceFunction[Long]{var isRunning = truevar count = 1Loverride def run(ctx: SourceFunction.SourceContext[Long]): Unit = {while(isRunning){ctx.collect(count)count+=1Thread.sleep(1000)}}override def cancel(): Unit = {isRunning=false} }方法的功能跟上面是一樣的。main方法如下:
def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironment// socketFunction(env) // nonParallelSourceFunction(env)parallelSourceFunction(env)env.execute("DataStreamSourceApp")}def parallelSourceFunction(env: StreamExecutionEnvironment): Unit = {val data=env.addSource(new CustomParallelSourceFunction()).setParallelism(3)data.print()}可以設置并行度3,輸出結果如下:
2> 1 1> 1 2> 1 2> 2 3> 2 3> 2 3> 3 4> 3 4> 3繼承RichParallelSourceFunction方法
class CustomRichParallelSourceFunction extends RichParallelSourceFunction[Long] {var isRunning = truevar count = 1Loverride def run(ctx: SourceFunction.SourceContext[Long]): Unit = {while (isRunning) {ctx.collect(count)count += 1Thread.sleep(1000)}}override def cancel(): Unit = {isRunning = false} } def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironment// socketFunction(env)// nonParallelSourceFunction(env) // parallelSourceFunction(env)richParallelSourceFunction(env)env.execute("DataStreamSourceApp")}def richParallelSourceFunction(env: StreamExecutionEnvironment): Unit = {val data = env.addSource(new CustomRichParallelSourceFunction()).setParallelism(3)data.print()}Java
實現SourceFunction接口
import org.apache.flink.streaming.api.functions.source.SourceFunction;public class JavaCustomNonParallelSourceFunction implements SourceFunction<Long> {boolean isRunning = true;long count = 1;@Overridepublic void run(SourceFunction.SourceContext ctx) throws Exception {while (isRunning) {ctx.collect(count);count+=1;Thread.sleep(1000);}}@Overridepublic void cancel() {isRunning=false;} } public static void main(String[] args) throws Exception {StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // socketFunction(environment);nonParallelSourceFunction(environment);environment.execute("JavaDataStreamSourceApp");}public static void nonParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction());data.print().setParallelism(1);}當設置并行度時:
DataStreamSource data = executionEnvironment.addSource(new JavaCustomNonParallelSourceFunction()).setParallelism(2);那么報錯異常:
Exception in thread "main" java.lang.IllegalArgumentException: Source: 1 is not a parallel sourceat org.apache.flink.streaming.api.datastream.DataStreamSource.setParallelism(DataStreamSource.java:55)at com.vincent.course05.JavaDataStreamSourceApp.nonParallelSourceFunction(JavaDataStreamSourceApp.java:16)at com.vincent.course05.JavaDataStreamSourceApp.main(JavaDataStreamSourceApp.java:10)實現ParallelSourceFunction接口
import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;public class JavaCustomParallelSourceFunction implements ParallelSourceFunction<Long> {boolean isRunning = true;long count = 1;@Overridepublic void run(SourceContext ctx) throws Exception {while (isRunning) {ctx.collect(count);count+=1;Thread.sleep(1000);}}@Overridepublic void cancel() {isRunning=false;} } public static void main(String[] args) throws Exception {StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // socketFunction(environment); // nonParallelSourceFunction(environment);parallelSourceFunction(environment);environment.execute("JavaDataStreamSourceApp");}public static void parallelSourceFunction(StreamExecutionEnvironment executionEnvironment){DataStreamSource data = executionEnvironment.addSource(new JavaCustomParallelSourceFunction()).setParallelism(2);data.print().setParallelism(1);}可以設置并行度,輸出結果:
1 1 2 2 3 3 4 4 5 5繼承抽象類RichParallelSourceFunction
public class JavaCustomRichParallelSourceFunction extends RichParallelSourceFunction<Long> {boolean isRunning = true;long count = 1;@Overridepublic void run(SourceContext ctx) throws Exception {while (isRunning) {ctx.collect(count);count+=1;Thread.sleep(1000);}}@Overridepublic void cancel() {isRunning=false;} } public static void main(String[] args) throws Exception {StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // socketFunction(environment); // nonParallelSourceFunction(environment); // parallelSourceFunction(environment);richpParallelSourceFunction(environment);environment.execute("JavaDataStreamSourceApp");}public static void richpParallelSourceFunction(StreamExecutionEnvironment executionEnvironment){DataStreamSource data = executionEnvironment.addSource(new JavaCustomRichParallelSourceFunction()).setParallelism(2);data.print().setParallelism(1);}輸出結果:
1 1 2 2 3 3 4 4 5 5 6 6SourceFunction??ParallelSourceFunction??RichParallelSourceFunction類之間的關系
?
總結
以上是生活随笔為你收集整理的Apache Flink 零基础入门(十五)Flink DataStream编程(如何自定义DataSource)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 业界流处理框架对比
- 下一篇: Apache Flink 零基础入门(十