model.parameters(),model.state_dict(),model .load_state_dict()以及torch.load()
一.model.parameters()與model.state_dict()
model.parameters()與model.state_dict()都是Pytorch中用于查看網(wǎng)絡(luò)參數(shù)的方法
一般來說,前者多見于優(yōu)化器的初始化,例如:
后者多見于模型的保存,如:
當(dāng)我們對(duì)網(wǎng)絡(luò)調(diào)參或者查看網(wǎng)絡(luò)的參數(shù)是否具有可復(fù)現(xiàn)性時(shí),可能會(huì)查看網(wǎng)絡(luò)的參數(shù)
pretrained_dict = torch.load(yolov4conv137weight)model_dict = _model.state_dict() #查看模型的權(quán)重和biass系數(shù)pretrained_dict = {k1: v for (k, v), k1 in zip(pretrained_dict.items(), model_dict)}model_dict.update(pretrained_dict) #更新model網(wǎng)絡(luò)模型的參數(shù)的權(quán)值和biass,這相當(dāng)于是一個(gè)淺拷貝,對(duì)這個(gè)更新改變會(huì)更改模型的權(quán)重和biassmodel.state_dict()其實(shí)返回的是一個(gè)OrderDict,存儲(chǔ)了網(wǎng)絡(luò)結(jié)構(gòu)的名字和對(duì)應(yīng)的參數(shù)。
例子:
#encoding:utf-8import torch import torch.nn as nn import torch.optim as optim import torchvision import numpy as mp import matplotlib.pyplot as plt import torch.nn.functional as F#define model class TheModelClass(nn.Module):def __init__(self):super(TheModelClass,self).__init__()self.conv1=nn.Conv2d(3,6,5)self.pool=nn.MaxPool2d(2,2)self.conv2=nn.Conv2d(6,16,5)self.fc1=nn.Linear(16*5*5,120)self.fc2=nn.Linear(120,84)self.fc3=nn.Linear(84,10)def forward(self,x):x=self.pool(F.relu(self.conv1(x)))x=self.pool(F.relu(self.conv2(x)))x=x.view(-1,16*5*5)x=F.relu(self.fc1(x))x=F.relu(self.fc2(x))x=self.fc3(x)return xdef main():# Initialize modelmodel = TheModelClass()#Initialize optimizeroptimizer=optim.SGD(model.parameters(),lr=0.001,momentum=0.9)#print model's state_dictprint('Model.state_dict:')for param_tensor in model.state_dict():#打印 key value字典print(param_tensor,'\t',model.state_dict()[param_tensor].size())#print optimizer's state_dictprint('Optimizer,s state_dict:')for var_name in optimizer.state_dict():print(var_name,'\t',optimizer.state_dict()[var_name])if __name__=='__main__':main()具體的輸出結(jié)果如下:可以很清晰的觀測(cè)到state_dict中存放的key和value的值
Model.state_dict: conv1.weight torch.Size([6, 3, 5, 5]) conv1.bias torch.Size([6]) conv2.weight torch.Size([16, 6, 5, 5]) conv2.bias torch.Size([16]) fc1.weight torch.Size([120, 400]) fc1.bias torch.Size([120]) fc2.weight torch.Size([84, 120]) fc2.bias torch.Size([84]) fc3.weight torch.Size([10, 84]) fc3.bias torch.Size([10]) Optimizer,s state_dict: state {} param_groups [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [367949288, 367949432, 376459056, 381121808, 381121952, 381122024, 381121880, 381122168, 381122096, 381122312]}]二.torch.load()和load_state_dict()
load_state_dict(state_dict, strict=True)
從 state_dict 中復(fù)制參數(shù)和緩沖區(qū)到 Module 及其子類中?
state_dict:包含參數(shù)和緩沖區(qū)的 Module 狀態(tài)字典
strict:默認(rèn) True,是否嚴(yán)格匹配 state_dict 的鍵值和 Module.state_dict()的鍵值
?
官方推薦的方法,只保存和恢復(fù)模型中的參數(shù)
# save torch.save(model.state_dict(), PATH)# load model = MyModel(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval()torch.load("path路徑")表示加載已經(jīng)訓(xùn)練好的模型
而model.load_state_dict(torch.load(PATH))表示將訓(xùn)練好的模型參數(shù)重新加載至網(wǎng)絡(luò)模型中
總結(jié)
以上是生活随笔為你收集整理的model.parameters(),model.state_dict(),model .load_state_dict()以及torch.load()的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Yolov1-手把手用自己的数据集训练自
- 下一篇: 解决:RuntimeError: CUD