latex导数_Latex:导数【高中常用公式】
Latex:導數【高中常用公式】
吳文中公式編輯器:Ⅰ) 像碼字一樣Latex,復雜公式輕松編輯; Ⅱ)
大學、高中、初中、小學常用公式,一鍵模板。
Note:① 點擊鏈接,想怎么修改就怎么修改;② 復制代碼,Latex代碼一鍵獲取;
導數的定義:
{f \prime { \left( {\mathop{{x}}\nolimits_{{0}}} \right) }=\mathop{{ \text{lim} }}\limits_{{ \Delta x \to 0}}\frac{{ \Delta y}}{{ \Delta x}}=\mathop{{ \text{lim} }}\limits_{{ \Delta x \to 0}}\frac{{f{ \left( {\mathop{{x}}\nolimits_{{0}}+ \Delta x} \right) }-f{ \left( {\mathop{{x}}\nolimits_{{0}}} \right) }}}{{ \Delta x}}}
導數的記法:
\mathop{{\left. y \prime \right| }}\nolimits_{{x=\mathop{{x}}\nolimits_{{0}}}}
萊布尼茲記法:
\begin{array}{*{20}{l}}
{\mathop{{\left. \frac{{ \textze8trgl8bvbq y}}{{ \textze8trgl8bvbq x}} \right| }}\nolimits_{{x=\mathop{{x}}\nolimits_{{0}}}}}\\
{\mathop{{\left. \frac{{ \textze8trgl8bvbq f{ \left( {x} \right) }}}{{ \textze8trgl8bvbq x}} \right| }}\nolimits_{{x=\mathop{{x}}\nolimits_{{0}}}}}
\end{array}
牛頓記法:
\mathop{{\left. \dot {y} \right| }}\nolimits_{{x=\mathop{{x}}\nolimits_{{0}}}}
反函數求導法則:
\left[ {\mathop{{f}}\nolimits^{{-1}}{ \left( {x} \right) }} \left] \prime =\frac{{1}}{{f \prime { \left( {y} \right) }}}\right. \right.
復合函數求導法則:
\begin{array}{*{20}{l}}
{y=f{ \left( {u} \right) },u=g{ \left( {x} \right) }}\\
{\frac{{ \textze8trgl8bvbq y}}{{ \textze8trgl8bvbq x}}=\frac{{ \textze8trgl8bvbq y}}{{ \textze8trgl8bvbq u}} \cdot \frac{{ \textze8trgl8bvbq u}}{{ \textze8trgl8bvbq x}}}
\end{array}
和差積商求導法則:
\begin{array}{*{20}{l}}
{ \left( {u \pm v} \left) \prime ={u \prime } \pm {v \prime }\right. \right. }\\
{ \left( {Cu} \left) \prime =C{u \prime }\right. \right. }\\
{ \left( {uv} \left) \prime ={u \prime }v+u{v \prime }\right. \right. }\\
{ \left( {\frac{{u}}{{v}}} \left) \prime =\frac{{u \prime v-u{v \prime }}}{{\mathop{{v}}\nolimits^{{2}}}},{ \left( {v \neq 0} \right) }\right. \right. }
\end{array}
基本導數1:
\begin{array}{*{20}{l}}
{ \left( {C} \left) \prime =0\right. \right. }\\
{ \left( {\mathop{{x}}\nolimits^{{ \mu }}} \left) \prime = \mu \mathop{{x}}\nolimits^{{ \mu -1}}\right. \right. }
\end{array}
基本導數2:
\begin{array}{*{20}{l}}
{ \left( { \text{sin} x} \left) \prime = \text{cos} x\right. \right. }\\
{ \left( { \text{cos} x} \left) \prime =- \text{sin} x\right. \right. }\\
{ \left( { \text{tan} x} \left) \prime =\mathop{{ \text{sec} }}\nolimits^{{2}}x\right. \right. }\\
{ \left( { \text{cot} x} \left) \prime =-\mathop{{ \text{csc} }}\nolimits^{{2}}x\right. \right. }\\
{ \left( { \text{sec} x} \left) \prime = \text{sec} x \text{tan} x\right. \right. }\\
{ \left( { \text{csc} x} \left) \prime =- \text{csc} x{ \text{cot} x}\right. \right. }
\end{array}
基本導數3:
\begin{array}{*{20}{l}}
{ \left( {\mathop{{a}}\nolimits^{{x}}} \left) \prime =\mathop{{a}}\nolimits^{{x}} \text{ln} a\right. \right. }\\
{ \left( {\mathop{{e}}\nolimits^{{x}}} \left) \prime =\mathop{{e}}\nolimits^{{x}}\right. \right. }\\
{ \left( {\mathop{{ \text{log} }}\nolimits_{{a}}x} \left) \prime =\frac{{1}}{{x \text{ln} a}}\right. \right. }\\
{ \left( { \text{ln} a} \left) \prime =\frac{{1}}{{x}}\right. \right. }
\end{array}
基本導數4:
\begin{array}{*{20}{l}}
{ \left( { \text{arcsin} x} \left) \prime =\frac{{1}}{{\sqrt{{1-\mathop{{x}}\nolimits^{{2}}}}}}\right. \right. }\\
{ \left( { \text{arccos} x} \left) \prime =-\frac{{1}}{{\sqrt{{1-\mathop{{x}}\nolimits^{{2}}}}}}\right. \right. }\\
{ \left( { \text{arctan} x} \left) \prime =\frac{{1}}{{1+\mathop{{x}}\nolimits^{{2}}}}\right. \right. }\\
{ \left( { \text{arccot} x} \left) \prime =-\frac{{1}}{{1+\mathop{{x}}\nolimits^{{2}}}}\right. \right. }
\end{array}
總結
以上是生活随笔為你收集整理的latex导数_Latex:导数【高中常用公式】的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 黑豹2女王陛下为什么死
- 下一篇: 坐火车返乡回东营要不要48小时核酸坐火车