Pytorch使用Vision Transformer做肺癌和结肠癌组织病理学图像分类
模型介紹
文章鏈接:https://arxiv.org/pdf/2010.11929.pdf
github地址:
視頻教程:https://www.bilibili.com/video/BV1Jh411Y7WQ?spm_id_from=333.337.search-card.all.click是B站大佬霹靂吧啦Wz的講解視頻,講得特別好,我的代碼也是完全按照他的代碼抄的,自己抄一遍代碼對Vision Transformer的理解會更深刻,很多模型細節看論文中是感受不到的,例如embedding的方法。Vision Transformer模型的結構如下圖所示:
VIT將一張圖片劃分個圖像patch,通過一個卷積層實現,其中卷積核的大小以及步長都是patch塊的大小。通過卷積層之后使用flatten操作將拉直成序列的形式,然后加上位置編碼,因為Attention機制沒有CNN的位置信息,在加上一個分類頭cls token,一起傳入然后Transformer Encoder。
數據集介紹
使用的數據集是肺癌和結腸癌組織病理學圖像,共包含五個類別的病理圖像,如下:
{"0": "colon_aca","1": "colon_n","2": "lung_aca","3": "lung_n","4": "lung_scc" }總共包含25000張圖像,每個類別5000張圖像,文件夾組織結構如下:
dataset ├── colon_aca │ ├── colonca1.jpeg │ ├── colonca2.jpeg │ ├── colonca3.jpeg │ ├── ............. │ ├── colonca5000.jpeg ├── colon_n ├── lung_aca ├── lung_n └── lung_scc其中包含兩種結腸癌的病理圖像以及三種肺癌的病理圖像,直接拿過來用做五分類任務,要是分解成為兩個單獨的癌癥分類準確率應該會更高。圖像如下所示:
代碼
VIT 模型
''' Author: weifeng liu Date: 2022-03-22 19:35:01 LastEditTime: 2022-03-22 21:35:02 LastEditors: Please set LastEditors Description: 打開koroFileHeader查看配置 進行設置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE FilePath: /Project/vision-transformer-implemment/vit_model.py ''' """ original code from rwightman: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ from functools import partial from collections import OrderedDictimport torch import torch.nn as nndef drop_path(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_() # binarizeoutput = x.div(keep_prob) * random_tensorreturn outputclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path(x, self.drop_prob, self.training)class PatchEmbed(nn.Module):"""圖像到的Embeadding"""def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):"""Args:img_size (int, optional): 輸入圖像尺寸. Defaults to 224.patch_size (int, optional): 圖像塊的大小. Defaults to 16.in_c (int, optional): 輸入通道數. Defaults to 3.embed_dim (int, optional): 每個圖像塊的embed維度. Defaults to 768.norm_layer (_type_, optional): 是否使用layer norm. Defaults to None."""super().__init__()img_size = (img_size, img_size)patch_size = (patch_size, patch_size)self.img_size = img_sizeself.patch_size = patch_sizeself.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1]self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):B, C, H, W = x.shapeassert H == self.img_size[0] and W == self.img_size[1], \f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return xclass Attention(nn.Module):def __init__(self,dim, # 輸入token的dimnum_heads=8,qkv_bias=False,qk_scale=None,attn_drop_ratio=0.,proj_drop_ratio=0.):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim ** -0.5self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop_ratio)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop_ratio)def forward(self, x):# [batch_size, num_patches + 1, total_embed_dim]B, N, C = x.shape# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)attn = self.attn_drop(attn)# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]# reshape: -> [batch_size, num_patches + 1, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x)x = self.proj_drop(x)return xclass Mlp(nn.Module):"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):""" MLPArgs:in_features (_type_): 輸入特征維度hidden_features (_type_, optional): 中間層特征維度. Defaults to None.out_features (_type_, optional): 輸出層特征維度. Defaults to None.act_layer (_type_, optional): 激活函數. Defaults to nn.GELU.drop (_type_, optional): Dropout 的概率. Defaults to 0.."""super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass Block(nn.Module):def __init__(self,dim,num_heads,mlp_ratio=4.,qkv_bias=False,qk_scale=None,drop_ratio=0.,attn_drop_ratio=0.,drop_path_ratio=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm):super(Block, self).__init__()self.norm1 = norm_layer(dim)self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)# NOTE: drop path for stochastic depth, we shall see if this is better than dropout hereself.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)def forward(self, x):x = x + self.drop_path(self.attn(self.norm1(x)))x = x + self.drop_path(self.mlp(self.norm2(x)))return xclass VisionTransformer(nn.Module):def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,act_layer=None):"""Args:img_size (int, optional): 輸入圖像尺寸. Defaults to 224.patch_size (int, optional): 每一個patch的尺寸. Defaults to 16.in_c (int, optional): 輸入圖像通道數. Defaults to 3.num_classes (int, optional): 分類的類別數. Defaults to 1000.embed_dim (int, optional): embedding 維度. Defaults to 768.depth (int, optional): Transformer encoder基本塊的個數. Defaults to 12.mlp_ratio (float, optional): MLP擴張比例. Defaults to 4.0.qkv_bias (bool, optional): . Defaults to False.qk_scale (_type_, optional): override default qk scale of head_dim ** -0.5 if set. Defaults to None.representaion_size (_type_, optional): _description_. Defaults to None.distilled (bool): model includes a distillation token and head as in DeiT modelsdrop_ratio (float): dropout rateattn_drop_ratio (float): attention dropout ratedrop_path_ratio (float): stochastic depth rateembed_layer (_type_, optional): _description_. Defaults to PatchEmbed.norm_layer (_type_, optional): _description_. Defaults to None.act_layer (_type_, optional): _description_. Defaults to None."""super(VisionTransformer, self).__init__()self.num_classes = num_classesself.num_features = self.embed_dim = embed_dim # num_features for consistency with other modelsself.num_tokens = 2 if distilled else 1norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)act_layer = act_layer or nn.GELUself.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)num_patches = self.patch_embed.num_patchesself.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else Noneself.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))self.pos_drop = nn.Dropout(p=drop_ratio)dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay ruleself.blocks = nn.Sequential(*[Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],norm_layer=norm_layer, act_layer=act_layer)for i in range(depth)])self.norm = norm_layer(embed_dim)# Representation layerif representation_size and not distilled:self.has_logits = Trueself.num_features = representation_sizeself.pre_logits = nn.Sequential(OrderedDict([("fc", nn.Linear(embed_dim, representation_size)),("act", nn.Tanh())]))else:self.has_logits = Falseself.pre_logits = nn.Identity()# Classifier head(s)self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()self.head_dist = Noneif distilled:self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()# Weight initnn.init.trunc_normal_(self.pos_embed, std=0.02)if self.dist_token is not None:nn.init.trunc_normal_(self.dist_token, std=0.02)nn.init.trunc_normal_(self.cls_token, std=0.02)self.apply(_init_vit_weights)def forward_features(self, x):# [B, C, H, W] -> [B, num_patches, embed_dim]x = self.patch_embed(x) # [B, 196, 768]# [1, 1, 768] -> [B, 1, 768]cls_token = self.cls_token.expand(x.shape[0], -1, -1)if self.dist_token is None:x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]else:x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)x = self.pos_drop(x + self.pos_embed)x = self.blocks(x)x = self.norm(x)if self.dist_token is None:return self.pre_logits(x[:, 0])else:return x[:, 0], x[:, 1]def forward(self, x):x = self.forward_features(x)if self.head_dist is not None:x, x_dist = self.head(x[0]), self.head_dist(x[1])if self.training and not torch.jit.is_scripting():# during inference, return the average of both classifier predictionsreturn x, x_distelse:return (x + x_dist) / 2else:x = self.head(x)return xdef _init_vit_weights(m):"""ViT weight initialization:param m: module"""if isinstance(m, nn.Linear):nn.init.trunc_normal_(m.weight, std=.01)if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out")if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.LayerNorm):nn.init.zeros_(m.bias)nn.init.ones_(m.weight)def vit_base_patch16_224(num_classes: int = 1000):"""ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:鏈接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA 密碼: eu9f"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=768,depth=12,num_heads=12,representation_size=None,num_classes=num_classes)return modeldef vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=768,depth=12,num_heads=12,representation_size=768 if has_logits else None,num_classes=num_classes)return modeldef vit_base_patch32_224(num_classes: int = 1000):"""ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:鏈接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg 密碼: s5hl"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=768,depth=12,num_heads=12,representation_size=None,num_classes=num_classes)return modeldef vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=768,depth=12,num_heads=12,representation_size=768 if has_logits else None,num_classes=num_classes)return modeldef vit_large_patch16_224(num_classes: int = 1000):"""ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:鏈接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ 密碼: qqt8"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=1024,depth=24,num_heads=16,representation_size=None,num_classes=num_classes)return modeldef vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=1024,depth=24,num_heads=16,representation_size=1024 if has_logits else None,num_classes=num_classes)return modeldef vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=1024,depth=24,num_heads=16,representation_size=1024 if has_logits else None,num_classes=num_classes)return modeldef vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.NOTE: converted weights not currently available, too large for github release hosting."""model = VisionTransformer(img_size=224,patch_size=14,embed_dim=1280,depth=32,num_heads=16,representation_size=1280 if has_logits else None,num_classes=num_classes)return model不得不說,大佬的代碼寫的真的很🐂🍺,讀起來比較好上手。
train.py
''' Author: your name Date: 2022-03-22 19:10:46 LastEditTime: 2022-03-22 21:56:52 LastEditors: Please set LastEditors Description: 打開koroFileHeader查看配置 進行設置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE FilePath: /Project/vision-transformer-implemment/train.py ''' import os import math import argparseimport torch import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler from torch.utils.tensorboard import SummaryWriter from torchvision import transformsfrom my_dataset import MyDataSet from vit_model import vit_base_patch16_224_in21k as create_model from utils import read_split_data, train_one_epoch, evaluatedef main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")if os.path.exists("./lung_colon_weights") is False:os.makedirs("./lung_colon_weights")tb_writer = SummaryWriter()train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),"val": transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}# 實例化訓練數據集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 實例化驗證數據集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)model = create_model(num_classes=5, has_logits=False).to(device)if args.weights != "":assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)weights_dict = torch.load(args.weights, map_location=device)# 刪除不需要的權重del_keys = ['head.weight', 'head.bias'] if model.has_logits \else ['pre_logits.fc.weight', 'pre_logits.fc.bias', 'head.weight', 'head.bias']for k in del_keys:del weights_dict[k]print(model.load_state_dict(weights_dict, strict=False))if args.freeze_layers:for name, para in model.named_parameters():# 除head, pre_logits外,其他權重全部凍結if "head" not in name and "pre_logits" not in name:para.requires_grad_(False)else:print("training {}".format(name))pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=5E-5)# Scheduler https://arxiv.org/pdf/1812.01187.pdflf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)for epoch in range(args.epochs):# traintrain_loss, train_acc = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)scheduler.step()# validateval_loss, val_acc = evaluate(model=model,data_loader=val_loader,device=device,epoch=epoch)tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]tb_writer.add_scalar(tags[0], train_loss, epoch)tb_writer.add_scalar(tags[1], train_acc, epoch)tb_writer.add_scalar(tags[2], val_loss, epoch)tb_writer.add_scalar(tags[3], val_acc, epoch)tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./lung_colon_weights/model-COVID{}.pth".format(epoch))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=5)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=32)parser.add_argument('--lr', type=float, default=0.001)parser.add_argument('--lrf', type=float, default=0.01)# 數據集所在根目錄# http://download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default="/home/lwf/Project/Datatset/數據集/肺癌和結腸癌組織病理學圖像/archive")parser.add_argument('--model-name', default='', help='create model name')# 預訓練權重路徑,如果不想載入就設置為空字符parser.add_argument('--weights', type=str, default='/home/lwf/Project/vision-transformer-implemment/init_weights/jx_vit_base_patch16_224_in21k-e5005f0a.pth',help='initial weights path')# 是否凍結權重parser.add_argument('--freeze-layers', type=bool, default=True)parser.add_argument('--device', default='cuda:1', help='device id (i.e. 0 or 0,1 or cpu)')opt = parser.parse_args()main(opt)修改一下最后的 --data_path 和 --weights的值即可運行起來
結果
不得不說,有預訓練的Transformer模型真的很香,在這個數據集訓練十個epoch以后就可以達到0.94左右的準確率,單張測試結果如下:
class: colon_aca prob: 0.931
class: colon_n prob: 0.0631
class: lung_aca prob: 0.00343
class: lung_n prob: 0.000419
class: lung_scc prob: 0.0025
記錄
親自實驗了Vision Transformer之后發現,在有預訓練的情況下還是很友好的,訓練起來的代價也沒有想象中的那么高,使用單塊2080ti訓練,圖像尺寸為[224,224],batch_size設為128時,顯存占用也不到5個G,但是每一次迭代計算會比較慢。比較友好,不像很多模型顯存占用很高,導致很難在普通平臺上訓練。
總結
以上是生活随笔為你收集整理的Pytorch使用Vision Transformer做肺癌和结肠癌组织病理学图像分类的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 语义分割损失函数系列(1):交叉熵损失函
- 下一篇: 语义分割损失函数系列(2):IoU损失