久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

今日arXiv精选 | 46篇EMNLP 2021最新论文

發布時間:2024/10/8 编程问答 37 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | 46篇EMNLP 2021最新论文 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

Neural Machine Translation Quality and Post-Editing Performance

Comment: 9 pages, 1 page appendix. To be presented at EMNLP2021

Link:?http://arxiv.org/abs/2109.05016

Abstract

We test the natural expectation that using MT in professional translationsaves human processing time. The last such study was carried out bySanchez-Torron and Koehn (2016) with phrase-based MT, artificially reducing thetranslation quality. In contrast, we focus on neural MT (NMT) of high quality,which has become the state-of-the-art approach since then and also got adoptedby most translation companies. ?Through an experimental study involving over 30 professional translators forEnglish ->Czech translation, we examine the relationship between NMTperformance and post-editing time and quality. Across all models, we found thatbetter MT systems indeed lead to fewer changes in the sentences in thisindustry setting. The relation between system quality and post-editing time ishowever not straightforward and, contrary to the results on phrase-based MT,BLEU is definitely not a stable predictor of the time or final output quality.

BiSECT: Learning to Split and Rephrase Sentences with Bitexts

Comment: 9 pages, 9 figures. Long paper to appear in Empirical Methods in ?Natural Language Processing 2021 (EMNLP 2021)

Link:?http://arxiv.org/abs/2109.05006

Abstract

An important task in NLP applications such as sentence simplification is theability to take a long, complex sentence and split it into shorter sentences,rephrasing as necessary. We introduce a novel dataset and a new model for this`split and rephrase' task. Our BiSECT training data consists of 1 million longEnglish sentences paired with shorter, meaning-equivalent English sentences. Weobtain these by extracting 1-2 sentence alignments in bilingual parallelcorpora and then using machine translation to convert both sides of the corpusinto the same language. BiSECT contains higher quality training examples thanprevious Split and Rephrase corpora, with sentence splits that require moresignificant modifications. We categorize examples in our corpus, and use thesecategories in a novel model that allows us to target specific regions of theinput sentence to be split and edited. Moreover, we show that models trained onBiSECT can perform a wider variety of split operations and improve uponprevious state-of-the-art approaches in automatic and human evaluations.

Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

Comment: EMNLP 2021. (Code: https://github.com/yumeng5/RoSTER)

Link:?http://arxiv.org/abs/2109.05003

Abstract

We study the problem of training named entity recognition (NER) models usingonly distantly-labeled data, which can be automatically obtained by matchingentity mentions in the raw text with entity types in a knowledge base. Thebiggest challenge of distantly-supervised NER is that the distant supervisionmay induce incomplete and noisy labels, rendering the straightforwardapplication of supervised learning ineffective. In this paper, we propose (1) anoise-robust learning scheme comprised of a new loss function and a noisy labelremoval step, for training NER models on distantly-labeled data, and (2) aself-training method that uses contextualized augmentations created bypre-trained language models to improve the generalization ability of the NERmodel. On three benchmark datasets, our method achieves superior performance,outperforming existing distantly-supervised NER models by significant margins.

Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04994

Abstract

Unlike well-structured text, such as news reports and encyclopedia articles,dialogue content often comes from two or more interlocutors, exchanginginformation with each other. In such a scenario, the topic of a conversationcan vary upon progression and the key information for a certain topic is oftenscattered across multiple utterances of different speakers, which poseschallenges to abstractly summarize dialogues. To capture the various topicinformation of a conversation and outline salient facts for the capturedtopics, this work proposes two topic-aware contrastive learning objectives,namely coherence detection and sub-summary generation objectives, which areexpected to implicitly model the topic change and handle information scatteringchallenges for the dialogue summarization task. The proposed contrastiveobjectives are framed as auxiliary tasks for the primary dialogue summarizationtask, united via an alternative parameter updating strategy. Extensiveexperiments on benchmark datasets demonstrate that the proposed simple methodsignificantly outperforms strong baselines and achieves new state-of-the-artperformance. The code and trained models are publicly available via\href{https://github.com/Junpliu/ConDigSum}{https://github.com/Junpliu/ConDigSum}.

Does Pretraining for Summarization Require Knowledge Transfer?

Comment: Camera-ready for Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04953

Abstract

Pretraining techniques leveraging enormous datasets have driven recentadvances in text summarization. While folk explanations suggest that knowledgetransfer accounts for pretraining's benefits, little is known about why itworks or what makes a pretraining task or dataset suitable. In this paper, wechallenge the knowledge transfer story, showing that pretraining on documentsconsisting of character n-grams selected at random, we can nearly match theperformance of models pretrained on real corpora. This work holds the promiseof eliminating upstream corpora, which may alleviate some concerns overoffensive language, bias, and copyright issues. To see whether the smallresidual benefit of using real data could be accounted for by the structure ofthe pretraining task, we design several tasks motivated by a qualitative studyof summarization corpora. However, these tasks confer no appreciable benefit,leaving open the possibility of a small role for knowledge transfer.

Tiered Reasoning for Intuitive Physics: Toward Verifiable Commonsense Language Understanding

Comment: Accepted to Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04947

Abstract

Large-scale, pre-trained language models (LMs) have achieved human-levelperformance on a breadth of language understanding tasks. However, evaluationsonly based on end task performance shed little light on machines' true abilityin language understanding and reasoning. In this paper, we highlight theimportance of evaluating the underlying reasoning process in addition to endperformance. Toward this goal, we introduce Tiered Reasoning for IntuitivePhysics (TRIP), a novel commonsense reasoning dataset with dense annotationsthat enable multi-tiered evaluation of machines' reasoning process. Ourempirical results show that while large LMs can achieve high end performance,they struggle to support their predictions with valid supporting evidence. TheTRIP dataset and our baseline results will motivate verifiable evaluation ofcommonsense reasoning and facilitate future research toward developing betterlanguage understanding and reasoning models.

Modeling Human Sentence Processing with Left-Corner Recurrent Neural Network Grammars

Comment: Accepted by EMNLP 2021

Link:?http://arxiv.org/abs/2109.04939

Abstract

In computational linguistics, it has been shown that hierarchical structuresmake language models (LMs) more human-like. However, the previous literaturehas been agnostic about a parsing strategy of the hierarchical models. In thispaper, we investigated whether hierarchical structures make LMs morehuman-like, and if so, which parsing strategy is most cognitively plausible. Inorder to address this question, we evaluated three LMs against human readingtimes in Japanese with head-final left-branching structures: Long Short-TermMemory (LSTM) as a sequential model and Recurrent Neural Network Grammars(RNNGs) with top-down and left-corner parsing strategies as hierarchicalmodels. Our computational modeling demonstrated that left-corner RNNGsoutperformed top-down RNNGs and LSTM, suggesting that hierarchical andleft-corner architectures are more cognitively plausible than top-down orsequential architectures. In addition, the relationships between the cognitiveplausibility and (i) perplexity, (ii) parsing, and (iii) beam size will also bediscussed.

Beyond the Tip of the Iceberg: Assessing Coherence of Text Classifiers

Comment: Accepted to Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04922

Abstract

As large-scale, pre-trained language models achieve human-level andsuperhuman accuracy on existing language understanding tasks, statistical biasin benchmark data and probing studies have recently called into question theirtrue capabilities. For a more informative evaluation than accuracy on textclassification tasks can offer, we propose evaluating systems through a novelmeasure of prediction coherence. We apply our framework to two existinglanguage understanding benchmarks with different properties to demonstrate itsversatility. Our experimental results show that this evaluation framework,although simple in ideas and implementation, is a quick, effective, andversatile measure to provide insight into the coherence of machines'predictions.

Examining Cross-lingual Contextual Embeddings with Orthogonal Structural Probes

Comment: EMNLP 2021 Main Conference

Link:?http://arxiv.org/abs/2109.04921

Abstract

State-of-the-art contextual embeddings are obtained from large languagemodels available only for a few languages. For others, we need to learnrepresentations using a multilingual model. There is an ongoing debate onwhether multilingual embeddings can be aligned in a space shared across manylanguages. The novel Orthogonal Structural Probe (Limisiewicz and Mare\v{c}ek,2021) allows us to answer this question for specific linguistic features andlearn a projection based only on mono-lingual annotated datasets. We evaluatesyntactic (UD) and lexical (WordNet) structural information encoded inmBERT'scontextual representations for nine diverse languages. We observe that forlanguages closely related to English, no transformation is needed. Theevaluated information is encoded in a shared cross-lingual embedding space. Forother languages, it is beneficial to apply orthogonal transformation learnedseparately for each language. We successfully apply our findings to zero-shotand few-shot cross-lingual parsing.

ReasonBERT: Pre-trained to Reason with Distant Supervision

Comment: Accepted to EMNLP'2021. Our code and pre-trained models are available ?at https://github.com/sunlab-osu/ReasonBERT

Link:?http://arxiv.org/abs/2109.04912

Abstract

We present ReasonBert, a pre-training method that augments language modelswith the ability to reason over long-range relations and multiple, possiblyhybrid contexts. Unlike existing pre-training methods that only harvestlearning signals from local contexts of naturally occurring texts, we propose ageneralized notion of distant supervision to automatically connect multiplepieces of text and tables to create pre-training examples that requirelong-range reasoning. Different types of reasoning are simulated, includingintersecting multiple pieces of evidence, bridging from one piece of evidenceto another, and detecting unanswerable cases. We conduct a comprehensiveevaluation on a variety of extractive question answering datasets ranging fromsingle-hop to multi-hop and from text-only to table-only to hybrid that requirevarious reasoning capabilities and show that ReasonBert achieves remarkableimprovement over an array of strong baselines. Few-shot experiments furtherdemonstrate that our pre-training method substantially improves sampleefficiency.

Document-level Entity-based Extraction as Template Generation

Comment: 13 pages. EMNLP 2021

Link:?http://arxiv.org/abs/2109.04901

Abstract

Document-level entity-based extraction (EE), aiming at extractingentity-centric information such as entity roles and entity relations, is key toautomatic knowledge acquisition from text corpora for various domains. Mostdocument-level EE systems build extractive models, which struggle to modellong-term dependencies among entities at the document level. To address thisissue, we propose a generative framework for two document-level EE tasks:role-filler entity extraction (REE) and relation extraction (RE). We firstformulate them as a template generation problem, allowing models to efficientlycapture cross-entity dependencies, exploit label semantics, and avoid theexponential computation complexity of identifying N-ary relations. A novelcross-attention guided copy mechanism, TopK Copy, is incorporated into apre-trained sequence-to-sequence model to enhance the capabilities ofidentifying key information in the input document. Experiments done on theMUC-4 and SciREX dataset show new state-of-the-art results on REE (+3.26%),binary RE (+4.8%), and 4-ary RE (+2.7%) in F1 score.

Efficient Test Time Adapter Ensembling for Low-resource Language Varieties

Comment: EMNLP 2021 Findings

Link:?http://arxiv.org/abs/2109.04877

Abstract

Adapters are light-weight modules that allow parameter-efficient fine-tuningof pretrained models. Specialized language and task adapters have recently beenproposed to facilitate cross-lingual transfer of multilingual pretrained models(Pfeiffer et al., 2020b). However, this approach requires training a separatelanguage adapter for every language one wishes to support, which can beimpractical for languages with limited data. An intuitive solution is to use arelated language adapter for the new language variety, but we observe that thissolution can lead to sub-optimal performance. In this paper, we aim to improvethe robustness of language adapters to uncovered languages without training newadapters. We find that ensembling multiple existing language adapters makes thefine-tuned model significantly more robust to other language varieties notincluded in these adapters. Building upon this observation, we propose EntropyMinimized Ensemble of Adapters (EMEA), a method that optimizes the ensembleweights of the pretrained language adapters for each test sentence byminimizing the entropy of its predictions. Experiments on three diverse groupsof language varieties show that our method leads to significant improvements onboth named entity recognition and part-of-speech tagging across all languages.

Studying word order through iterative shuffling

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04867

Abstract

As neural language models approach human performance on NLP benchmark tasks,their advances are widely seen as evidence of an increasingly complexunderstanding of syntax. This view rests upon a hypothesis that has not yetbeen empirically tested: that word order encodes meaning essential toperforming these tasks. We refute this hypothesis in many cases: in the GLUEsuite and in various genres of English text, the words in a sentence or phrasecan rarely be permuted to form a phrase carrying substantially differentinformation. Our surprising result relies on inference by iterative shuffling(IBIS), a novel, efficient procedure that finds the ordering of a bag of wordshaving the highest likelihood under a fixed language model. IBIS can use anyblack-box model without additional training and is superior to existing wordordering algorithms. Coalescing our findings, we discuss how shufflinginference procedures such as IBIS can benefit language modeling and constrainedgeneration.

CoPHE: A Count-Preserving Hierarchical Evaluation Metric in Large-Scale Multi-Label Text Classification

Comment: 5 pages, 2 figures, EMNLP 2021

Link:?http://arxiv.org/abs/2109.04853

Abstract

Large-Scale Multi-Label Text Classification (LMTC) includes tasks withhierarchical label spaces, such as automatic assignment of ICD-9 codes todischarge summaries. Performance of models in prior art is evaluated withstandard precision, recall, and F1 measures without regard for the richhierarchical structure. In this work we argue for hierarchical evaluation ofthe predictions of neural LMTC models. With the example of the ICD-9 ontologywe describe a structural issue in the representation of the structured labelspace in prior art, and propose an alternative representation based on thedepth of the ontology. We propose a set of metrics for hierarchical evaluationusing the depth-based representation. We compare the evaluation scores from theproposed metrics with previously used metrics on prior art LMTC models forICD-9 coding in MIMIC-III. We also propose further avenues of researchinvolving the proposed ontological representation.

Block Pruning For Faster Transformers

Comment: EMNLP 2021. Code, hyper-parameters, evaluation results and ?checkpoints available at https://github.com/huggingface/nn_pruning

Link:?http://arxiv.org/abs/2109.04838

Abstract

Pre-training has improved model accuracy for both classification andgeneration tasks at the cost of introducing much larger and slower models.Pruning methods have proven to be an effective way of reducing model size,whereas distillation methods are proven for speeding up inference. We introducea block pruning approach targeting both small and fast models. Our approachextends structured methods by considering blocks of any size and integratesthis structure into the movement pruning paradigm for fine-tuning. We find thatthis approach learns to prune out full components of the underlying model, suchas attention heads. Experiments consider classification and generation tasks,yielding among other results a pruned model that is a 2.4x faster, 74% smallerBERT on SQuAD v1, with a 1% drop on F1, competitive both with distilled modelsin speed and pruned models in size.

An Evaluation Dataset and Strategy for Building Robust Multi-turn Response Selection Model

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04834

Abstract

Multi-turn response selection models have recently shown comparableperformance to humans in several benchmark datasets. However, in the realenvironment, these models often have weaknesses, such as making incorrectpredictions based heavily on superficial patterns without a comprehensiveunderstanding of the context. For example, these models often give a high scoreto the wrong response candidate containing several keywords related to thecontext but using the inconsistent tense. In this study, we analyze theweaknesses of the open-domain Korean Multi-turn response selection models andpublish an adversarial dataset to evaluate these weaknesses. We also suggest astrategy to build a robust model in this adversarial environment.

Asking It All: Generating Contextualized Questions for any Semantic Role

Comment: Accepted as a long paper to EMNLP 2021, Main Conference

Link:?http://arxiv.org/abs/2109.04832

Abstract

Asking questions about a situation is an inherent step towards understandingit. To this end, we introduce the task of role question generation, which,given a predicate mention and a passage, requires producing a set of questionsasking about all possible semantic roles of the predicate. We develop atwo-stage model for this task, which first produces a context-independentquestion prototype for each role and then revises it to be contextuallyappropriate for the passage. Unlike most existing approaches to questiongeneration, our approach does not require conditioning on existing answers inthe text. Instead, we condition on the type of information to inquire about,regardless of whether the answer appears explicitly in the text, could beinferred from it, or should be sought elsewhere. Our evaluation demonstratesthat we generate diverse and well-formed questions for a large, broad-coverageontology of predicates and roles.

Artificial Text Detection via Examining the Topology of Attention Maps

Comment: Accepted to EMNLP 2021

Link:?http://arxiv.org/abs/2109.04825

Abstract

The impressive capabilities of recent generative models to create texts thatare challenging to distinguish from the human-written ones can be misused forgenerating fake news, product reviews, and even abusive content. Despite theprominent performance of existing methods for artificial text detection, theystill lack interpretability and robustness towards unseen models. To this end,we propose three novel types of interpretable topological features for thistask based on Topological Data Analysis (TDA) which is currently understudiedin the field of NLP. We empirically show that the features derived from theBERT model outperform count- and neural-based baselines up to 10\% on threecommon datasets, and tend to be the most robust towards unseen GPT-stylegeneration models as opposed to existing methods. The probing analysis of thefeatures reveals their sensitivity to the surface and syntactic properties. Theresults demonstrate that TDA is a promising line with respect to NLP tasks,specifically the ones that incorporate surface and structural information.

Does It Capture STEL? A Modular, Similarity-based Linguistic Style Evaluation Framework

Comment: Accepted at EMNLP2021

Link:?http://arxiv.org/abs/2109.04817

Abstract

Style is an integral part of natural language. However, evaluation methodsfor style measures are rare, often task-specific and usually do not control forcontent. We propose the modular, fine-grained and content-controlledsimilarity-based STyle EvaLuation framework (STEL) to test the performance ofany model that can compare two sentences on style. We illustrate STEL with twogeneral dimensions of style (formal/informal and simple/complex) as well as twospecific characteristics of style (contrac'tion and numb3r substitution). Wefind that BERT-based methods outperform simple versions of commonly used stylemeasures like 3-grams, punctuation frequency and LIWC-based approaches. Weinvite the addition of further tasks and task instances to STEL and hope tofacilitate the improvement of style-sensitive measures.

Mixture-of-Partitions: Infusing Large Biomedical Knowledge Graphs into BERT

Comment: EMNLP 2021 camera-ready version

Link:?http://arxiv.org/abs/2109.04810

Abstract

Infusing factual knowledge into pre-trained models is fundamental for manyknowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions(MoP), an infusion approach that can handle a very large knowledge graph (KG)by partitioning it into smaller sub-graphs and infusing their specificknowledge into various BERT models using lightweight adapters. To leverage theoverall factual knowledge for a target task, these sub-graph adapters arefurther fine-tuned along with the underlying BERT through a mixture layer. Weevaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) onsix downstream tasks (inc. NLI, QA, Classification), and the results show thatour MoP consistently enhances the underlying BERTs in task performance, andachieves new SOTA performances on five evaluated datasets.

Exophoric Pronoun Resolution in Dialogues with Topic Regularization

Comment: EMNLP 2021 main conference

Link:?http://arxiv.org/abs/2109.04787

Abstract

Resolving pronouns to their referents has long been studied as a fundamentalnatural language understanding problem. Previous works on pronoun coreferenceresolution (PCR) mostly focus on resolving pronouns to mentions in text whileignoring the exophoric scenario. Exophoric pronouns are common in dailycommunications, where speakers may directly use pronouns to refer to someobjects present in the environment without introducing the objects first.Although such objects are not mentioned in the dialogue text, they can often bedisambiguated by the general topics of the dialogue. Motivated by this, wepropose to jointly leverage the local context and global topics of dialogues tosolve the out-of-text PCR problem. Extensive experiments demonstrate theeffectiveness of adding topic regularization for resolving exophoric pronouns.

RoR: Read-over-Read for Long Document Machine Reading Comprehension

Comment: Accepted as findings of EMNLP2021

Link:?http://arxiv.org/abs/2109.04780

Abstract

Transformer-based pre-trained models, such as BERT, have achieved remarkableresults on machine reading comprehension. However, due to the constraint ofencoding length (e.g., 512 WordPiece tokens), a long document is usually splitinto multiple chunks that are independently read. It results in the readingfield being limited to individual chunks without information collaboration forlong document machine reading comprehension. To address this problem, wepropose RoR, a read-over-read method, which expands the reading field fromchunk to document. Specifically, RoR includes a chunk reader and a documentreader. The former first predicts a set of regional answers for each chunk,which are then compacted into a highly-condensed version of the originaldocument, guaranteeing to be encoded once. The latter further predicts theglobal answers from this condensed document. Eventually, a voting strategy isutilized to aggregate and rerank the regional and global answers for finalprediction. Extensive experiments on two benchmarks QuAC and TriviaQAdemonstrate the effectiveness of RoR for long document reading. Notably, RoRranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time ofsubmission (May 17th, 2021).

Improving Multilingual Translation by Representation and Gradient Regularization

Comment: EMNLP 2021 (Long)

Link:?http://arxiv.org/abs/2109.04778

Abstract

Multilingual Neural Machine Translation (NMT) enables one model to serve alltranslation directions, including ones that are unseen during training, i.e.zero-shot translation. Despite being theoretically attractive, current modelsoften produce low quality translations -- commonly failing to even produceoutputs in the right target language. In this work, we observe that off-targettranslation is dominant even in strong multilingual systems, trained on massivemultilingual corpora. To address this issue, we propose a joint approach toregularize NMT models at both representation-level and gradient-level. At therepresentation level, we leverage an auxiliary target language prediction taskto regularize decoder outputs to retain information about the target language.At the gradient level, we leverage a small amount of direct data (in thousandsof sentence pairs) to regularize model gradients. Our results demonstrate thatour approach is highly effective in both reducing off-target translationoccurrences and improving zero-shot translation performance by +5.59 and +10.38BLEU on WMT and OPUS datasets respectively. Moreover, experiments show that ourmethod also works well when the small amount of direct data is not available.

A Strong Baseline for Query Efficient Attacks in a Black Box Setting

Comment: EMNLP 2021 - Main Conference

Link:?http://arxiv.org/abs/2109.04775

Abstract

Existing black box search methods have achieved high success rate ingenerating adversarial attacks against NLP models. However, such search methodsare inefficient as they do not consider the amount of queries required togenerate adversarial attacks. Also, prior attacks do not maintain a consistentsearch space while comparing different search methods. In this paper, wepropose a query efficient attack strategy to generate plausible adversarialexamples on text classification and entailment tasks. Our attack jointlyleverages attention mechanism and locality sensitive hashing (LSH) to reducethe query count. We demonstrate the efficacy of our approach by comparing ourattack with four baselines across three different search spaces. Further, webenchmark our results across the same search space used in prior attacks. Incomparison to attacks proposed, on an average, we are able to reduce the querycount by 75% across all datasets and target models. We also demonstrate thatour attack achieves a higher success rate when compared to prior attacks in alimited query setting.

How Does Fine-tuning Affect the Geometry of Embedding Space: A Case Study on Isotropy

Comment: To appear in Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04740

Abstract

It is widely accepted that fine-tuning pre-trained language models usuallybrings about performance improvements in downstream tasks. However, there arelimited studies on the reasons behind this effectiveness, particularly from theviewpoint of structural changes in the embedding space. Trying to fill thisgap, in this paper, we analyze the extent to which the isotropy of theembedding space changes after fine-tuning. We demonstrate that, even thoughisotropy is a desirable geometrical property, fine-tuning does not necessarilyresult in isotropy enhancements. Moreover, local structures in pre-trainedcontextual word representations (CWRs), such as those encoding token types orfrequency, undergo a massive change during fine-tuning. Our experiments showdramatic growth in the number of elongated directions in the embedding space,which, in contrast to pre-trained CWRs, carry the essential linguisticknowledge in the fine-tuned embedding space, making existing isotropyenhancement methods ineffective.

Genre as Weak Supervision for Cross-lingual Dependency Parsing

Comment: Accepted to EMNLP 2021 (Main Conference)

Link:?http://arxiv.org/abs/2109.04733

Abstract

Recent work has shown that monolingual masked language models learn torepresent data-driven notions of language variation which can be used fordomain-targeted training data selection. Dataset genre labels are alreadyfrequently available, yet remain largely unexplored in cross-lingual setups. Weharness this genre metadata as a weak supervision signal for targeted dataselection in zero-shot dependency parsing. Specifically, we projecttreebank-level genre information to the finer-grained sentence level, with thegoal to amplify information implicitly stored in unsupervised contextualizedrepresentations. We demonstrate that genre is recoverable from multilingualcontextual embeddings and that it provides an effective signal for trainingdata selection in cross-lingual, zero-shot scenarios. For 12 low-resourcelanguage treebanks, six of which are test-only, our genre-specific methodssignificantly outperform competitive baselines as well as recentembedding-based methods for data selection. Moreover, genre-based dataselection provides new state-of-the-art results for three of these targetlanguages.

Assessing the Reliability of Word Embedding Gender Bias Measures

Comment: 23 pages, 24 figures, 3 tables. Accepted to EMNLP 2021

Link:?http://arxiv.org/abs/2109.04732

Abstract

Various measures have been proposed to quantify human-like social biases inword embeddings. However, bias scores based on these measures can suffer frommeasurement error. One indication of measurement quality is reliability,concerning the extent to which a measure produces consistent results. In thispaper, we assess three types of reliability of word embedding gender biasmeasures, namely test-retest reliability, inter-rater consistency and internalconsistency. Specifically, we investigate the consistency of bias scores acrossdifferent choices of random seeds, scoring rules and words. Furthermore, weanalyse the effects of various factors on these measures' reliability scores.Our findings inform better design of word embedding gender bias measures.Moreover, we urge researchers to be more critical about the application of suchmeasures.

AfroMT: Pretraining Strategies and Reproducible Benchmarks for Translation of 8 African Languages

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04715

Abstract

Reproducible benchmarks are crucial in driving progress of machinetranslation research. However, existing machine translation benchmarks havebeen mostly limited to high-resource or well-represented languages. Despite anincreasing interest in low-resource machine translation, there are nostandardized reproducible benchmarks for many African languages, many of whichare used by millions of speakers but have less digitized textual data. Totackle these challenges, we propose AfroMT, a standardized, clean, andreproducible machine translation benchmark for eight widely spoken Africanlanguages. We also develop a suite of analysis tools for system diagnosistaking into account the unique properties of these languages. Furthermore, weexplore the newly considered case of low-resource focused pretraining anddevelop two novel data augmentation-based strategies, leveraging word-levelalignment information and pseudo-monolingual data for pretraining multilingualsequence-to-sequence models. We demonstrate significant improvements whenpretraining on 11 languages, with gains of up to 2 BLEU points over strongbaselines. We also show gains of up to 12 BLEU points over cross-lingualtransfer baselines in data-constrained scenarios. All code and pretrainedmodels will be released as further steps towards larger reproducible benchmarksfor African languages.

Balancing Methods for Multi-label Text Classification with Long-Tailed Class Distribution

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04712

Abstract

Multi-label text classification is a challenging task because it requirescapturing label dependencies. It becomes even more challenging when classdistribution is long-tailed. Resampling and re-weighting are common approachesused for addressing the class imbalance problem, however, they are noteffective when there is label dependency besides class imbalance because theyresult in oversampling of common labels. Here, we introduce the application ofbalancing loss functions for multi-label text classification. We performexperiments on a general domain dataset with 90 labels (Reuters-21578) and adomain-specific dataset from PubMed with 18211 labels. We find that adistribution-balanced loss function, which inherently addresses both the classimbalance and label linkage problems, outperforms commonly used loss functions.Distribution balancing methods have been successfully used in the imagerecognition field. Here, we show their effectiveness in natural languageprocessing. Source code is available athttps://github.com/blessu/BalancedLossNLP.

Pre-train or Annotate? Domain Adaptation with a Constrained Budget

Comment: Accepted to EMNLP 2021

Link:?http://arxiv.org/abs/2109.04711

Abstract

Recent work has demonstrated that pre-training in-domain language models canboost performance when adapting to a new domain. However, the costs associatedwith pre-training raise an important question: given a fixed budget, what stepsshould an NLP practitioner take to maximize performance? In this paper, westudy domain adaptation under budget constraints, and approach it as a customerchoice problem between data annotation and pre-training. Specifically, wemeasure the annotation cost of three procedural text datasets and thepre-training cost of three in-domain language models. Then we evaluate theutility of different combinations of pre-training and data annotation undervarying budget constraints to assess which combination strategy works best. Wefind that, for small budgets, spending all funds on annotation leads to thebest performance; once the budget becomes large enough, a combination of dataannotation and in-domain pre-training works more optimally. We thereforesuggest that task-specific data annotation should be part of an economicalstrategy when adapting an NLP model to a new domain.

Knowledge-Aware Meta-learning for Low-Resource Text Classification

Comment: Accepted by EMNLP 2021

Link:?http://arxiv.org/abs/2109.04707

Abstract

Meta-learning has achieved great success in leveraging the historical learnedknowledge to facilitate the learning process of the new task. However, merelylearning the knowledge from the historical tasks, adopted by currentmeta-learning algorithms, may not generalize well to testing tasks when theyare not well-supported by training tasks. This paper studies a low-resourcetext classification problem and bridges the gap between meta-training andmeta-testing tasks by leveraging the external knowledge bases. Specifically, wepropose KGML to introduce additional representation for each sentence learnedfrom the extracted sentence-specific knowledge graph. The extensive experimentson three datasets demonstrate the effectiveness of KGML under both supervisedadaptation and unsupervised adaptation settings.

Rethinking Zero-shot Neural Machine Translation: From a Perspective of Latent Variables

Comment: EMNLP Findings 2021

Link:?http://arxiv.org/abs/2109.04705

Abstract

Zero-shot translation, directly translating between language pairs unseen intraining, is a promising capability of multilingual neural machine translation(NMT). However, it usually suffers from capturing spurious correlations betweenthe output language and language invariant semantics due to the maximumlikelihood training objective, leading to poor transfer performance onzero-shot translation. In this paper, we introduce a denoising autoencoderobjective based on pivot language into traditional training objective toimprove the translation accuracy on zero-shot directions. The theoreticalanalysis from the perspective of latent variables shows that our approachactually implicitly maximizes the probability distributions for zero-shotdirections. On two benchmark machine translation datasets, we demonstrate thatthe proposed method is able to effectively eliminate the spurious correlationsand significantly outperforms state-of-the-art methods with a remarkableperformance. Our code is available at https://github.com/Victorwz/zs-nmt-dae.

Heterogeneous Graph Neural Networks for Keyphrase Generation

Comment: Accepted by EMNLP 2021

Link:?http://arxiv.org/abs/2109.04703

Abstract

The encoder-decoder framework achieves state-of-the-art results in keyphrasegeneration (KG) tasks by predicting both present keyphrases that appear in thesource document and absent keyphrases that do not. However, relying solely onthe source document can result in generating uncontrollable and inaccurateabsent keyphrases. To address these problems, we propose a novel graph-basedmethod that can capture explicit knowledge from related references. Our modelfirst retrieves some document-keyphrases pairs similar to the source documentfrom a pre-defined index as references. Then a heterogeneous graph isconstructed to capture relationships of different granularities between thesource document and its references. To guide the decoding process, ahierarchical attention and copy mechanism is introduced, which directly copiesappropriate words from both the source document and its references based ontheir relevance and significance. The experimental results on multiple KGbenchmarks show that the proposed model achieves significant improvementsagainst other baseline models, especially with regard to the absent keyphraseprediction.

Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning

Comment: To appear in Proceedings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04689

Abstract

Motivated by suggested question generation in conversational newsrecommendation systems, we propose a model for generating question-answer pairs(QA pairs) with self-contained, summary-centric questions andlength-constrained, article-summarizing answers. We begin by collecting a newdataset of news articles with questions as titles and pairing them withsummaries of varying length. This dataset is used to learn a QA pair generationmodel producing summaries as answers that balance brevity with sufficiencyjointly with their corresponding questions. We then reinforce the QA pairgeneration process with a differentiable reward function to mitigate exposurebias, a common problem in natural language generation. Both automatic metricsand human evaluation demonstrate these QA pairs successfully capture thecentral gists of the articles and achieve high answer accuracy.

DIALKI: Knowledge Identification in Conversational Systems through Dialogue-Document Contextualization

Comment: EMNLP 2021 camera-ready

Link:?http://arxiv.org/abs/2109.04673

Abstract

Identifying relevant knowledge to be used in conversational systems that aregrounded in long documents is critical to effective response generation. Weintroduce a knowledge identification model that leverages the documentstructure to provide dialogue-contextualized passage encodings and betterlocate knowledge relevant to the conversation. An auxiliary loss captures thehistory of dialogue-document connections. We demonstrate the effectiveness ofour model on two document-grounded conversational datasets and provide analysesshowing generalization to unseen documents and long dialogue contexts.

Investigating Numeracy Learning Ability of a Text-to-Text Transfer Model

Comment: 7 pages, 10 figures, 5 tables, Accepted in the Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04672

Abstract

The transformer-based pre-trained language models have been tremendouslysuccessful in most of the conventional NLP tasks. But they often struggle inthose tasks where numerical understanding is required. Some possible reasonscan be the tokenizers and pre-training objectives which are not specificallydesigned to learn and preserve numeracy. Here we investigate the ability oftext-to-text transfer learning model (T5), which has outperformed itspredecessors in the conventional NLP tasks, to learn numeracy. We consider fournumeracy tasks: numeration, magnitude order prediction, finding minimum andmaximum in a series, and sorting. We find that, although T5 models performreasonably well in the interpolation setting, they struggle considerably in theextrapolation setting across all four tasks.

Zero-Shot Dialogue State Tracking via Cross-Task Transfer

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04655

Abstract

Zero-shot transfer learning for dialogue state tracking (DST) enables us tohandle a variety of task-oriented dialogue domains without the expense ofcollecting in-domain data. In this work, we propose to transfer the\textit{cross-task} knowledge from general question answering (QA) corpora forthe zero-shot DST task. Specifically, we propose TransferQA, a transferablegenerative QA model that seamlessly combines extractive QA and multi-choice QAvia a text-to-text transformer framework, and tracks both categorical slots andnon-categorical slots in DST. In addition, we introduce two effective ways toconstruct unanswerable questions, namely, negative question sampling andcontext truncation, which enable our model to handle "none" value slots in thezero-shot DST setting. The extensive experiments show that our approachessubstantially improve the existing zero-shot and few-shot results on MultiWoz.Moreover, compared to the fully trained baseline on the Schema-Guided Dialoguedataset, our approach shows better generalization ability in unseen domains.

Towards Developing a Multilingual and Code-Mixed Visual Question Answering System by Knowledge Distillation

Comment: Accepted in EMNLP-Findings (2021)

Link:?http://arxiv.org/abs/2109.04653

Abstract

Pre-trained language-vision models have shown remarkable performance on thevisual question answering (VQA) task. However, most pre-trained models aretrained by only considering monolingual learning, especially the resource-richlanguage like English. Training such models for multilingual setups demand highcomputing resources and multilingual language-vision dataset which hinderstheir application in practice. To alleviate these challenges, we propose aknowledge distillation approach to extend an English language-vision model(teacher) into an equally effective multilingual and code-mixed model(student). Unlike the existing knowledge distillation methods, which only usethe output from the last layer of the teacher network for distillation, ourstudent model learns and imitates the teacher from multiple intermediate layers(language and vision encoders) with appropriately designed distillationobjectives for incremental knowledge extraction. We also create the large-scalemultilingual and code-mixed VQA dataset in eleven different language setupsconsidering the multiple Indian and European languages. Experimental resultsand in-depth analysis show the effectiveness of the proposed VQA model over thepre-trained language-vision models on eleven diverse language setups.

What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers

Comment: Accepted to EMNLP2021 as a long paper

Link:?http://arxiv.org/abs/2109.04650

Abstract

GPT-3 shows remarkable in-context learning ability of large-scale languagemodels (LMs) trained on hundreds of billion scale data. Here we address someremaining issues less reported by the GPT-3 paper, such as a non-English LM,the performances of different sized models, and the effect of recentlyintroduced prompt optimization on in-context learning. To achieve this, weintroduce HyperCLOVA, a Korean variant of 82B GPT-3 trained on a Korean-centriccorpus of 560B tokens. Enhanced by our Korean-specific tokenization, HyperCLOVAwith our training configuration shows state-of-the-art in-context zero-shot andfew-shot learning performances on various downstream tasks in Korean. Also, weshow the performance benefits of prompt-based learning and demonstrate how itcan be integrated into the prompt engineering pipeline. Then we discuss thepossibility of materializing the No Code AI paradigm by providing AIprototyping capabilities to non-experts of ML by introducing HyperCLOVA studio,an interactive prompt engineering interface. Lastly, we demonstrate thepotential of our methods with three successful in-house applications.

Rule-based Morphological Inflection Improves Neural Terminology Translation

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04620

Abstract

Current approaches to incorporating terminology constraints in machinetranslation (MT) typically assume that the constraint terms are provided intheir correct morphological forms. This limits their application to real-worldscenarios where constraint terms are provided as lemmas. In this paper, weintroduce a modular framework for incorporating lemma constraints in neural MT(NMT) in which linguistic knowledge and diverse types of NMT models can beflexibly applied. It is based on a novel cross-lingual inflection module thatinflects the target lemma constraints based on the source context. We explorelinguistically motivated rule-based and data-driven neural-based inflectionmodules and design English-German health and English-Lithuanian news testsuites to evaluate them in domain adaptation and low-resource MT settings.Results show that our rule-based inflection module helps NMT models incorporatelemma constraints more accurately than a neural module and outperforms theexisting end-to-end approach with lower training costs.

An Exploratory Study on Long Dialogue Summarization: What Works and What's Next

Comment: Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04609

Abstract

Dialogue summarization helps readers capture salient information from longconversations in meetings, interviews, and TV series. However, real-worlddialogues pose a great challenge to current summarization models, as thedialogue length typically exceeds the input limits imposed by recenttransformer-based pre-trained models, and the interactive nature of dialoguesmakes relevant information more context-dependent and sparsely distributed thannews articles. In this work, we perform a comprehensive study on long dialoguesummarization by investigating three strategies to deal with the lengthy inputproblem and locate relevant information: (1) extended transformer models suchas Longformer, (2) retrieve-then-summarize pipeline models with severaldialogue utterance retrieval methods, and (3) hierarchical dialogue encodingmodels such as HMNet. Our experimental results on three long dialogue datasets(QMSum, MediaSum, SummScreen) show that the retrieve-then-summarize pipelinemodels yield the best performance. We also demonstrate that the summary qualitycan be further improved with a stronger retrieval model and pretraining onproper external summarization datasets.

IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization

Comment: Accepted at EMNLP 2021

Link:?http://arxiv.org/abs/2109.04607

Abstract

We present IndoBERTweet, the first large-scale pretrained model forIndonesian Twitter that is trained by extending a monolingually-trainedIndonesian BERT model with additive domain-specific vocabulary. We focus inparticular on efficient model adaptation under vocabulary mismatch, andbenchmark different ways of initializing the BERT embedding layer for new wordtypes. We find that initializing with the average BERT subword embedding makespretraining five times faster, and is more effective than proposed methods forvocabulary adaptation in terms of extrinsic evaluation over seven Twitter-baseddatasets.

Augmenting BERT-style Models with Predictive Coding to Improve Discourse-level Representations

Comment: Accepted paper EMNLP2021

Link:?http://arxiv.org/abs/2109.04602

Abstract

Current language models are usually trained using a self-supervised scheme,where the main focus is learning representations at the word or sentence level.However, there has been limited progress in generating useful discourse-levelrepresentations. In this work, we propose to use ideas from predictive codingtheory to augment BERT-style language models with a mechanism that allows themto learn suitable discourse-level representations. As a result, our proposedapproach is able to predict future sentences using explicit top-downconnections that operate at the intermediate layers of the network. Byexperimenting with benchmarks designed to evaluate discourse-related knowledgeusing pre-trained sentence representations, we demonstrate that our approachimproves performance in 6 out of 11 tasks by excelling in discourserelationship detection.

Cross-lingual Transfer for Text Classification with Dictionary-based Heterogeneous Graph

Comment: Published in Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04400

Abstract

In cross-lingual text classification, it is required that task-specifictraining data in high-resource source languages are available, where the taskis identical to that of a low-resource target language. However, collectingsuch training data can be infeasible because of the labeling cost, taskcharacteristics, and privacy concerns. This paper proposes an alternativesolution that uses only task-independent word embeddings of high-resourcelanguages and bilingual dictionaries. First, we construct a dictionary-basedheterogeneous graph (DHG) from bilingual dictionaries. This opens thepossibility to use graph neural networks for cross-lingual transfer. Theremaining challenge is the heterogeneity of DHG because multiple languages areconsidered. To address this challenge, we propose dictionary-basedheterogeneous graph neural network (DHGNet) that effectively handles theheterogeneity of DHG by two-step aggregations, which are word-level andlanguage-level aggregations. Experimental results demonstrate that our methodoutperforms pretrained models even though it does not access to large corpora.Furthermore, it can perform well even though dictionaries contain manyincorrect translations. Its robustness allows the usage of a wider range ofdictionaries such as an automatically constructed dictionary and crowdsourceddictionary, which are convenient for real-world applications.

Counterfactual Adversarial Learning with Representation Interpolation

Comment: Accepted to Findings of EMNLP 2021

Link:?http://arxiv.org/abs/2109.04746

Abstract

Deep learning models exhibit a preference for statistical fitting overlogical reasoning. Spurious correlations might be memorized when there existsstatistical bias in training data, which severely limits the model performanceespecially in small data scenarios. In this work, we introduce CounterfactualAdversarial Training framework (CAT) to tackle the problem from a causalityperspective. Particularly, for a specific sample, CAT first generates acounterfactual representation through latent space interpolation in anadversarial manner, and then performs Counterfactual Risk Minimization (CRM) oneach original-counterfactual pair to adjust sample-wise loss weightdynamically, which encourages the model to explore the true causal effect.Extensive experiments demonstrate that CAT achieves substantial performanceimprovement over SOTA across different downstream tasks, including sentenceclassification, natural language inference and question answering.

Style Pooling: Automatic Text Style Obfuscation for Improved Classification Fairness

Comment: EMNLP 2021

Link:?http://arxiv.org/abs/2109.04624

Abstract

Text style can reveal sensitive attributes of the author (e.g. race or age)to the reader, which can, in turn, lead to privacy violations and bias in bothhuman and algorithmic decisions based on text. For example, the style ofwriting in job applications might reveal protected attributes of the candidatewhich could lead to bias in hiring decisions, regardless of whether hiringdecisions are made algorithmically or by humans. We propose a VAE-basedframework that obfuscates stylistic features of human-generated text throughstyle transfer by automatically re-writing the text itself. Our frameworkoperationalizes the notion of obfuscated style in a flexible way that enablestwo distinct notions of obfuscated style: (1) a minimal notion that effectivelyintersects the various styles seen in training, and (2) a maximal notion thatseeks to obfuscate by adding stylistic features of all sensitive attributes totext, in effect, computing a union of styles. Our style-obfuscation frameworkcan be used for multiple purposes, however, we demonstrate its effectiveness inimproving the fairness of downstream classifiers. We also conduct acomprehensive study on style pooling's effect on fluency, semantic consistency,and attribute removal from text, in two and three domain style obfuscation.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | 46篇EMNLP 2021最新论文的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

日韩少妇内射免费播放 | 99精品国产综合久久久久五月天 | 妺妺窝人体色www婷婷 | 国产精品毛片一区二区 | 日本www一道久久久免费榴莲 | 国产午夜视频在线观看 | 久久亚洲精品成人无码 | 成人免费无码大片a毛片 | 午夜福利一区二区三区在线观看 | 久久久久av无码免费网 | 一本大道久久东京热无码av | 高清国产亚洲精品自在久久 | 少妇性俱乐部纵欲狂欢电影 | 亚洲综合另类小说色区 | 国产综合久久久久鬼色 | 又湿又紧又大又爽a视频国产 | 兔费看少妇性l交大片免费 | 99er热精品视频 | 好屌草这里只有精品 | 国产suv精品一区二区五 | a在线观看免费网站大全 | 一本久道高清无码视频 | 人妻少妇被猛烈进入中文字幕 | 国产精品美女久久久网av | 伊人久久大香线焦av综合影院 | 熟妇激情内射com | 亚洲熟悉妇女xxx妇女av | 国产真实乱对白精彩久久 | 日本精品少妇一区二区三区 | 在教室伦流澡到高潮hnp视频 | 亚洲 另类 在线 欧美 制服 | 日本一本二本三区免费 | 性欧美videos高清精品 | 性生交片免费无码看人 | 中文字幕乱码人妻无码久久 | 少妇一晚三次一区二区三区 | 国产亚洲人成在线播放 | 国产精品美女久久久久av爽李琼 | 夫妻免费无码v看片 | 波多野42部无码喷潮在线 | 亚洲色偷偷男人的天堂 | 日本一卡二卡不卡视频查询 | 欧美人妻一区二区三区 | 色五月丁香五月综合五月 | 久久精品人人做人人综合 | 麻豆国产人妻欲求不满谁演的 | 国产偷抇久久精品a片69 | 中文字幕av日韩精品一区二区 | 中文字幕日产无线码一区 | 久久久www成人免费毛片 | 日本护士毛茸茸高潮 | 国产三级久久久精品麻豆三级 | 精品欧洲av无码一区二区三区 | 欧美日韩人成综合在线播放 | 玩弄少妇高潮ⅹxxxyw | 蜜桃av抽搐高潮一区二区 | 18禁止看的免费污网站 | 无码国产激情在线观看 | 国产成人无码区免费内射一片色欲 | 亚洲熟妇色xxxxx亚洲 | 给我免费的视频在线观看 | 久久久久久九九精品久 | 欧美乱妇无乱码大黄a片 | 亚洲中文字幕va福利 | 人人爽人人澡人人人妻 | 亚洲精品无码人妻无码 | 麻豆国产人妻欲求不满 | 亚洲人成人无码网www国产 | 一区二区三区高清视频一 | 欧美老人巨大xxxx做受 | а√天堂www在线天堂小说 | 久久zyz资源站无码中文动漫 | 国产真人无遮挡作爱免费视频 | 国产99久久精品一区二区 | 国产农村妇女高潮大叫 | 国产婷婷色一区二区三区在线 | 国产精品人人爽人人做我的可爱 | 国产精品免费大片 | 久久99国产综合精品 | 无套内谢的新婚少妇国语播放 | 欧美色就是色 | 日韩精品无码免费一区二区三区 | 日本精品人妻无码77777 天堂一区人妻无码 | 亚洲精品国偷拍自产在线麻豆 | 亚洲精品一区三区三区在线观看 | 又大又硬又黄的免费视频 | 欧美激情内射喷水高潮 | 国产熟妇另类久久久久 | 色老头在线一区二区三区 | 欧美35页视频在线观看 | 欧美国产日韩亚洲中文 | 东京无码熟妇人妻av在线网址 | 免费人成网站视频在线观看 | 国产福利视频一区二区 | 国产成人无码专区 | 99久久精品无码一区二区毛片 | 东京热无码av男人的天堂 | 乱人伦中文视频在线观看 | 3d动漫精品啪啪一区二区中 | 成人影院yy111111在线观看 | 无码人妻精品一区二区三区下载 | 免费无码的av片在线观看 | 精品国产aⅴ无码一区二区 | 久久久久免费精品国产 | 无套内射视频囯产 | av无码久久久久不卡免费网站 | 俄罗斯老熟妇色xxxx | 亚洲成在人网站无码天堂 | 国产熟妇另类久久久久 | 精品欧美一区二区三区久久久 | 亚洲日韩中文字幕在线播放 | 中文字幕av伊人av无码av | 国产一区二区三区日韩精品 | 国产绳艺sm调教室论坛 | 女人高潮内射99精品 | 午夜理论片yy44880影院 | 久久久av男人的天堂 | 成人性做爰aaa片免费看不忠 | 国内丰满熟女出轨videos | 久久精品无码一区二区三区 | 中文字幕日产无线码一区 | av无码不卡在线观看免费 | 久久国产精品偷任你爽任你 | 色一情一乱一伦一区二区三欧美 | 日产精品99久久久久久 | 伊人久久大香线蕉av一区二区 | 亚洲精品国偷拍自产在线麻豆 | 精品aⅴ一区二区三区 | 国产精品久久国产精品99 | 亚洲娇小与黑人巨大交 | 国产美女精品一区二区三区 | 综合激情五月综合激情五月激情1 | 国产成人av免费观看 | 午夜肉伦伦影院 | 性色欲情网站iwww九文堂 | 久久久中文久久久无码 | 久久zyz资源站无码中文动漫 | 国产在线aaa片一区二区99 | 国产午夜无码视频在线观看 | 国产成人午夜福利在线播放 | 成人一区二区免费视频 | 性欧美牲交在线视频 | 一本色道久久综合狠狠躁 | 色噜噜亚洲男人的天堂 | 国产精品永久免费视频 | 国产成人精品必看 | 成人欧美一区二区三区 | 中文字幕无码av激情不卡 | 亚洲精品一区二区三区四区五区 | 欧美高清在线精品一区 | 水蜜桃av无码 | 天堂无码人妻精品一区二区三区 | 日韩精品a片一区二区三区妖精 | 日韩av无码中文无码电影 | 国产成人精品三级麻豆 | 天天爽夜夜爽夜夜爽 | 香港三级日本三级妇三级 | 国产av一区二区三区最新精品 | 国产黑色丝袜在线播放 | 亚洲成av人片天堂网无码】 | 狠狠综合久久久久综合网 | 无码国产激情在线观看 | 少妇厨房愉情理9仑片视频 | 亚洲理论电影在线观看 | 亚洲精品一区二区三区四区五区 | 日本免费一区二区三区最新 | 精品欧洲av无码一区二区三区 | 色情久久久av熟女人妻网站 | 国产真人无遮挡作爱免费视频 | 99久久久国产精品无码免费 | 欧美日韩视频无码一区二区三 | 国产熟女一区二区三区四区五区 | 亚洲色欲色欲欲www在线 | 国产精品办公室沙发 | 欧美丰满少妇xxxx性 | 国产亚洲tv在线观看 | 亚洲日韩av片在线观看 | 无码人妻av免费一区二区三区 | 亚洲自偷精品视频自拍 | 亚洲理论电影在线观看 | 未满小14洗澡无码视频网站 | 色综合久久88色综合天天 | 国产成人精品一区二区在线小狼 | 日本爽爽爽爽爽爽在线观看免 | 日本一卡2卡3卡四卡精品网站 | 亚洲色www成人永久网址 | 久久综合九色综合97网 | 人妻互换免费中文字幕 | 久久精品视频在线看15 | 久久综合激激的五月天 | 午夜精品一区二区三区的区别 | 激情爆乳一区二区三区 | av无码电影一区二区三区 | 亚洲乱亚洲乱妇50p | 亚洲午夜久久久影院 | 一本色道久久综合亚洲精品不卡 | 四虎影视成人永久免费观看视频 | 国产猛烈高潮尖叫视频免费 | 国产福利视频一区二区 | 激情亚洲一区国产精品 | 日本护士xxxxhd少妇 | 中文字幕乱妇无码av在线 | 国产精品毛片一区二区 | 国产内射爽爽大片视频社区在线 | 欧美黑人巨大xxxxx | 久久天天躁狠狠躁夜夜免费观看 | 国产精品亚洲专区无码不卡 | 亚洲大尺度无码无码专区 | 日本精品久久久久中文字幕 | 国产精品亚洲lv粉色 | 中文字幕乱妇无码av在线 | 人人爽人人澡人人人妻 | 国色天香社区在线视频 | 中文字幕+乱码+中文字幕一区 | а√天堂www在线天堂小说 | 98国产精品综合一区二区三区 | av无码电影一区二区三区 | 免费人成网站视频在线观看 | 欧美35页视频在线观看 | 国产特级毛片aaaaaaa高清 | 国产 精品 自在自线 | 国産精品久久久久久久 | 少女韩国电视剧在线观看完整 | 日本大乳高潮视频在线观看 | 中文无码成人免费视频在线观看 | 亚洲小说图区综合在线 | 成人精品视频一区二区三区尤物 | 亚洲国产综合无码一区 | 久久亚洲中文字幕精品一区 | 久久久久国色av免费观看性色 | 人妻体内射精一区二区三四 | 在线看片无码永久免费视频 | 久久精品中文闷骚内射 | 久久国内精品自在自线 | 久久成人a毛片免费观看网站 | 久久这里只有精品视频9 | 无码人妻黑人中文字幕 | 亚洲色大成网站www | 欧洲极品少妇 | 蜜桃臀无码内射一区二区三区 | 一区二区三区高清视频一 | 美女扒开屁股让男人桶 | 少妇高潮喷潮久久久影院 | 玩弄人妻少妇500系列视频 | 国精品人妻无码一区二区三区蜜柚 | 老太婆性杂交欧美肥老太 | 国产办公室秘书无码精品99 | 久久午夜无码鲁丝片 | 无码任你躁久久久久久久 | 亚欧洲精品在线视频免费观看 | 精品无码一区二区三区的天堂 | 国产莉萝无码av在线播放 | 欧美放荡的少妇 | 亚洲熟妇色xxxxx欧美老妇 | 人人妻人人澡人人爽欧美精品 | 乱人伦人妻中文字幕无码久久网 | 1000部啪啪未满十八勿入下载 | 美女黄网站人色视频免费国产 | 国产三级精品三级男人的天堂 | 久久精品国产99久久6动漫 | 免费观看的无遮挡av | 丝袜足控一区二区三区 | 亚洲国产精品一区二区第一页 | 久久久久久亚洲精品a片成人 | 日韩 欧美 动漫 国产 制服 | 国产艳妇av在线观看果冻传媒 | 欧美日韩在线亚洲综合国产人 | 亚洲小说图区综合在线 | 午夜精品一区二区三区在线观看 | 成人片黄网站色大片免费观看 | 少妇无码一区二区二三区 | 久久久久se色偷偷亚洲精品av | 国产内射爽爽大片视频社区在线 | 久久亚洲国产成人精品性色 | 丰满人妻被黑人猛烈进入 | 久久99精品国产麻豆 | 成人性做爰aaa片免费看不忠 | 欧美人妻一区二区三区 | 久久久av男人的天堂 | 亚洲自偷自偷在线制服 | 免费乱码人妻系列无码专区 | 午夜不卡av免费 一本久久a久久精品vr综合 | 亚洲人亚洲人成电影网站色 | 久久亚洲精品成人无码 | 精品久久久久久亚洲精品 | 国产精品久久福利网站 | 日韩亚洲欧美精品综合 | 亚洲aⅴ无码成人网站国产app | 免费乱码人妻系列无码专区 | 99麻豆久久久国产精品免费 | 亚洲 另类 在线 欧美 制服 | 又大又紧又粉嫩18p少妇 | 夜先锋av资源网站 | 麻豆国产丝袜白领秘书在线观看 | 最新版天堂资源中文官网 | 国产另类ts人妖一区二区 | 乌克兰少妇性做爰 | 久久综合九色综合欧美狠狠 | 亚洲午夜无码久久 | 成人免费无码大片a毛片 | 久久无码人妻影院 | 欧美熟妇另类久久久久久不卡 | 日日碰狠狠躁久久躁蜜桃 | 成人无码影片精品久久久 | 无码国产乱人伦偷精品视频 | 国内少妇偷人精品视频 | 精品无人国产偷自产在线 | 国产熟女一区二区三区四区五区 | 久久综合给合久久狠狠狠97色 | 久久国产劲爆∧v内射 | 无遮挡啪啪摇乳动态图 | 中文无码成人免费视频在线观看 | 久久午夜无码鲁丝片秋霞 | 亚洲综合无码一区二区三区 | 亚洲人亚洲人成电影网站色 | 精品欧洲av无码一区二区三区 | 影音先锋中文字幕无码 | 日韩精品无码一本二本三本色 | 国产在线一区二区三区四区五区 | 国产午夜无码精品免费看 | 人人爽人人澡人人人妻 | 午夜丰满少妇性开放视频 | 女高中生第一次破苞av | 亚洲乱码日产精品bd | 极品尤物被啪到呻吟喷水 | 成人一区二区免费视频 | 麻豆人妻少妇精品无码专区 | 乌克兰少妇xxxx做受 | 亚洲欧洲日本综合aⅴ在线 | 欧美xxxxx精品 | 亚洲精品国产精品乱码不卡 | 国内精品一区二区三区不卡 | 扒开双腿吃奶呻吟做受视频 | 国产在线精品一区二区高清不卡 | 暴力强奷在线播放无码 | 日日噜噜噜噜夜夜爽亚洲精品 | 天天摸天天碰天天添 | 西西人体www44rt大胆高清 | 日韩精品成人一区二区三区 | 亚洲精品成a人在线观看 | 蜜桃av抽搐高潮一区二区 | 亚洲中文字幕成人无码 | 欧美熟妇另类久久久久久多毛 | 中国女人内谢69xxxx | 伊人久久大香线蕉av一区二区 | 国产舌乚八伦偷品w中 | 亚洲区小说区激情区图片区 | 国产猛烈高潮尖叫视频免费 | 欧美激情综合亚洲一二区 | 久久久精品国产sm最大网站 | 偷窥日本少妇撒尿chinese | www成人国产高清内射 | 久久97精品久久久久久久不卡 | 精品偷自拍另类在线观看 | 国产在线精品一区二区三区直播 | 牲交欧美兽交欧美 | 丰满人妻被黑人猛烈进入 | 99久久婷婷国产综合精品青草免费 | 老子影院午夜精品无码 | 性欧美熟妇videofreesex | 亚洲人成网站色7799 | 天天综合网天天综合色 | 久久综合九色综合欧美狠狠 | 精品久久久无码人妻字幂 | 最近的中文字幕在线看视频 | 澳门永久av免费网站 | 东京一本一道一二三区 | 麻豆果冻传媒2021精品传媒一区下载 | 无码av免费一区二区三区试看 | 成人精品一区二区三区中文字幕 | 国产手机在线αⅴ片无码观看 | 亚洲精品成人福利网站 | aⅴ亚洲 日韩 色 图网站 播放 | 男人的天堂av网站 | 亚洲成熟女人毛毛耸耸多 | 中文毛片无遮挡高清免费 | 性啪啪chinese东北女人 | 纯爱无遮挡h肉动漫在线播放 | 水蜜桃亚洲一二三四在线 | 国产高潮视频在线观看 | 日韩视频 中文字幕 视频一区 | 88国产精品欧美一区二区三区 | 性色欲网站人妻丰满中文久久不卡 | 中文字幕人妻丝袜二区 | 亚洲毛片av日韩av无码 | 国产三级精品三级男人的天堂 | 久久人人爽人人人人片 | 三级4级全黄60分钟 | 18无码粉嫩小泬无套在线观看 | 色偷偷人人澡人人爽人人模 | 九九在线中文字幕无码 | 亚洲国产精品一区二区第一页 | 成人欧美一区二区三区黑人免费 | 精品乱子伦一区二区三区 | 国产精品无码永久免费888 | 97se亚洲精品一区 | 人人妻在人人 | 欧美日本精品一区二区三区 | 欧美一区二区三区视频在线观看 | 亚洲欧美日韩成人高清在线一区 | 永久免费观看国产裸体美女 | 人人妻人人澡人人爽欧美一区 | 51国偷自产一区二区三区 | 欧美 日韩 人妻 高清 中文 | av人摸人人人澡人人超碰下载 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 无码人妻精品一区二区三区不卡 | 亚洲欧美综合区丁香五月小说 | 亚洲成av人片在线观看无码不卡 | 内射欧美老妇wbb | 樱花草在线播放免费中文 | 曰本女人与公拘交酡免费视频 | 国产成人精品久久亚洲高清不卡 | 亚洲色欲色欲天天天www | 色诱久久久久综合网ywww | 亚洲色欲久久久综合网东京热 | 亚洲成a人一区二区三区 | 极品嫩模高潮叫床 | 久久亚洲精品成人无码 | 狠狠综合久久久久综合网 | 日本精品少妇一区二区三区 | 久久综合九色综合97网 | 丰满人妻一区二区三区免费视频 | 国产精品无码久久av | 久久99精品久久久久婷婷 | 亚洲狠狠色丁香婷婷综合 | 亚洲精品一区二区三区大桥未久 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 中文字幕色婷婷在线视频 | 老司机亚洲精品影院无码 | 老熟妇乱子伦牲交视频 | 牛和人交xxxx欧美 | 国产成人无码区免费内射一片色欲 | 1000部啪啪未满十八勿入下载 | 人妻夜夜爽天天爽三区 | 少妇被黑人到高潮喷出白浆 | 亚洲国产精华液网站w | 激情五月综合色婷婷一区二区 | 欧美激情内射喷水高潮 | 东京无码熟妇人妻av在线网址 | 亚洲七七久久桃花影院 | 永久免费精品精品永久-夜色 | 99精品无人区乱码1区2区3区 | 夜夜高潮次次欢爽av女 | 18禁止看的免费污网站 | 啦啦啦www在线观看免费视频 | 国产精品对白交换视频 | 55夜色66夜色国产精品视频 | 国产亚洲欧美日韩亚洲中文色 | 久久久国产一区二区三区 | 欧美人与牲动交xxxx | 久久综合给久久狠狠97色 | 亚洲综合在线一区二区三区 | 丰腴饱满的极品熟妇 | 蜜臀av在线播放 久久综合激激的五月天 | 欧美zoozzooz性欧美 | 欧美激情一区二区三区成人 | √天堂中文官网8在线 | 国产精品国产三级国产专播 | av无码不卡在线观看免费 | 免费乱码人妻系列无码专区 | 久久97精品久久久久久久不卡 | 成人片黄网站色大片免费观看 | 亚洲色无码一区二区三区 | 国产精品亚洲一区二区三区喷水 | 亚洲综合无码一区二区三区 | 丰满少妇弄高潮了www | 精品久久久中文字幕人妻 | 日产国产精品亚洲系列 | 沈阳熟女露脸对白视频 | 女高中生第一次破苞av | 国产精品亚洲一区二区三区喷水 | 亚洲 高清 成人 动漫 | 99久久精品国产一区二区蜜芽 | 亚洲国产精品一区二区第一页 | 免费国产黄网站在线观看 | 亚洲爆乳大丰满无码专区 | 久久久久免费看成人影片 | 天堂在线观看www | 99久久人妻精品免费二区 | 永久免费精品精品永久-夜色 | 丰满人妻精品国产99aⅴ | 国色天香社区在线视频 | 欧美日韩色另类综合 | 日本精品高清一区二区 | 日日麻批免费40分钟无码 | 奇米影视888欧美在线观看 | 亚洲va欧美va天堂v国产综合 | 久久国产精品二国产精品 | 婷婷六月久久综合丁香 | 人妻无码αv中文字幕久久琪琪布 | 日本乱偷人妻中文字幕 | 午夜无码人妻av大片色欲 | 强开小婷嫩苞又嫩又紧视频 | 欧美大屁股xxxxhd黑色 | 熟女体下毛毛黑森林 | 国产农村乱对白刺激视频 | 亚洲の无码国产の无码影院 | 熟妇人妻无码xxx视频 | 99er热精品视频 | 精品午夜福利在线观看 | 欧美人与禽zoz0性伦交 | 欧美肥老太牲交大战 | 少妇人妻av毛片在线看 | 一本一道久久综合久久 | 精品人妻av区 | 婷婷色婷婷开心五月四房播播 | 欧美猛少妇色xxxxx | 综合网日日天干夜夜久久 | 麻豆av传媒蜜桃天美传媒 | 婷婷六月久久综合丁香 | 亚洲乱码中文字幕在线 | 亚洲性无码av中文字幕 | 久久综合给久久狠狠97色 | 国产亚洲欧美日韩亚洲中文色 | 亚洲人成影院在线无码按摩店 | 国产精品丝袜黑色高跟鞋 | 精品国产一区二区三区四区在线看 | 欧美真人作爱免费视频 | аⅴ资源天堂资源库在线 | 性色av无码免费一区二区三区 | 欧美性生交活xxxxxdddd | 无码一区二区三区在线 | 精品人妻av区 | 领导边摸边吃奶边做爽在线观看 | 色综合视频一区二区三区 | 国产午夜亚洲精品不卡下载 | 久久无码专区国产精品s | 无码人妻精品一区二区三区不卡 | 在线播放免费人成毛片乱码 | 国产精品第一国产精品 | 2020久久香蕉国产线看观看 | 三级4级全黄60分钟 | 76少妇精品导航 | 欧美激情综合亚洲一二区 | 精品国偷自产在线 | 国产在线无码精品电影网 | 国产精品资源一区二区 | 青青青手机频在线观看 | 人妻少妇精品无码专区动漫 | 亚洲成熟女人毛毛耸耸多 | 极品尤物被啪到呻吟喷水 | 国产亚洲精品精品国产亚洲综合 | 亚洲理论电影在线观看 | 2020久久香蕉国产线看观看 | 欧美变态另类xxxx | 婷婷丁香五月天综合东京热 | 国产午夜无码视频在线观看 | 麻豆果冻传媒2021精品传媒一区下载 | 久久久久久久人妻无码中文字幕爆 | 国产人妻人伦精品1国产丝袜 | 亚洲熟妇色xxxxx欧美老妇y | 久久久久久av无码免费看大片 | 波多野结衣高清一区二区三区 | 99久久久无码国产aaa精品 | 国产麻豆精品一区二区三区v视界 | 丰满少妇人妻久久久久久 | 无码精品人妻一区二区三区av | 欧洲熟妇精品视频 | 国产精品高潮呻吟av久久 | 国产成人av免费观看 | 亚洲无人区一区二区三区 | 俺去俺来也在线www色官网 | 国产免费无码一区二区视频 | 欧美丰满少妇xxxx性 | 扒开双腿疯狂进出爽爽爽视频 | 久久99久久99精品中文字幕 | 嫩b人妻精品一区二区三区 | 爱做久久久久久 | 1000部夫妻午夜免费 | 欧美日韩一区二区免费视频 | 国产精品视频免费播放 | 免费观看激色视频网站 | 全球成人中文在线 | 国产成人久久精品流白浆 | 久久久久久亚洲精品a片成人 | 久久这里只有精品视频9 | 熟妇人妻中文av无码 | 亚洲娇小与黑人巨大交 | 久久综合给久久狠狠97色 | 亚洲综合在线一区二区三区 | 国产成人无码av在线影院 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 欧美成人家庭影院 | 中文字幕人妻丝袜二区 | 色欲久久久天天天综合网精品 | 伊人色综合久久天天小片 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 无码人妻黑人中文字幕 | 亚洲乱码中文字幕在线 | 亚洲一区av无码专区在线观看 | 天堂亚洲免费视频 | 久久久久人妻一区精品色欧美 | 永久免费精品精品永久-夜色 | 亚洲精品久久久久avwww潮水 | 久久人人97超碰a片精品 | 欧美日韩精品 | 亚洲午夜久久久影院 | 久久亚洲日韩精品一区二区三区 | 人妻与老人中文字幕 | 国产在热线精品视频 | av无码不卡在线观看免费 | 免费播放一区二区三区 | 人妻熟女一区 | 久久久久亚洲精品男人的天堂 | 亚洲熟女一区二区三区 | 欧洲美熟女乱又伦 | 国产 浪潮av性色四虎 | 免费看男女做好爽好硬视频 | 日本精品人妻无码免费大全 | 亚洲色欲色欲欲www在线 | 国产精品久久久久久久9999 | 亚洲成av人影院在线观看 | 人妻少妇精品久久 | 亚洲狠狠色丁香婷婷综合 | 亚洲国精产品一二二线 | 亚洲春色在线视频 | 亚洲男女内射在线播放 | 丰满肥臀大屁股熟妇激情视频 | 亚洲人成人无码网www国产 | 任你躁在线精品免费 | 亚洲综合在线一区二区三区 | 亚洲熟悉妇女xxx妇女av | 国产亚洲精品久久久久久大师 | 曰本女人与公拘交酡免费视频 | 亚洲区欧美区综合区自拍区 | 国产精品久免费的黄网站 | 国产日产欧产精品精品app | 亚洲国产精品无码久久久久高潮 | √天堂资源地址中文在线 | 国产亚洲精品久久久闺蜜 | 婷婷色婷婷开心五月四房播播 | 两性色午夜免费视频 | 老司机亚洲精品影院无码 | 亚洲国产日韩a在线播放 | 久久人人爽人人人人片 | 丝袜人妻一区二区三区 | 亚洲の无码国产の无码步美 | 一本加勒比波多野结衣 | 一本久道高清无码视频 | 2019午夜福利不卡片在线 | 亚洲国产精品久久久天堂 | www国产精品内射老师 | 成人性做爰aaa片免费看 | 鲁大师影院在线观看 | 两性色午夜视频免费播放 | 色狠狠av一区二区三区 | 午夜精品久久久内射近拍高清 | 亚洲乱码日产精品bd | 无码人妻丰满熟妇区五十路百度 | 99久久99久久免费精品蜜桃 | 亚洲成a人片在线观看无码 | 丰腴饱满的极品熟妇 | 国产高清av在线播放 | 熟女俱乐部五十路六十路av | 曰本女人与公拘交酡免费视频 | 强奷人妻日本中文字幕 | 亚洲中文字幕久久无码 | 国产亚洲日韩欧美另类第八页 | 亚洲男人av天堂午夜在 | 两性色午夜免费视频 | 免费人成在线观看网站 | 国产午夜无码视频在线观看 | 国产亚洲美女精品久久久2020 | 亚洲gv猛男gv无码男同 | 中文字幕乱码亚洲无线三区 | 性色av无码免费一区二区三区 | 国产乱人伦av在线无码 | 一个人看的视频www在线 | 亚洲精品成a人在线观看 | 一本久久伊人热热精品中文字幕 | 影音先锋中文字幕无码 | 亚洲色无码一区二区三区 | 精品国产乱码久久久久乱码 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 精品欧洲av无码一区二区三区 | 国产精品欧美成人 | 无码纯肉视频在线观看 | 丰满少妇熟乱xxxxx视频 | 亚洲第一无码av无码专区 | 日韩少妇白浆无码系列 | 亚洲精品一区二区三区婷婷月 | 少妇一晚三次一区二区三区 | 亚洲精品中文字幕久久久久 | 99riav国产精品视频 | 一本无码人妻在中文字幕免费 | 久久精品女人天堂av免费观看 | 成人精品视频一区二区 | 一本久道高清无码视频 | 色婷婷综合激情综在线播放 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 亚洲欧美日韩国产精品一区二区 | 99久久精品午夜一区二区 | 图片区 小说区 区 亚洲五月 | 色妞www精品免费视频 | 高清无码午夜福利视频 | 国产精品永久免费视频 | 久精品国产欧美亚洲色aⅴ大片 | 动漫av网站免费观看 | 精品国偷自产在线 | 欧美成人免费全部网站 | 亚洲乱码国产乱码精品精 | 精品久久综合1区2区3区激情 | 在线精品国产一区二区三区 | 秋霞成人午夜鲁丝一区二区三区 | 欧美阿v高清资源不卡在线播放 | 国产一区二区三区日韩精品 | 欧美日韩综合一区二区三区 | 久久综合色之久久综合 | 丝袜足控一区二区三区 | 丰满少妇人妻久久久久久 | 婷婷丁香六月激情综合啪 | 久久综合香蕉国产蜜臀av | 日韩成人一区二区三区在线观看 | 日韩av无码一区二区三区 | 日日麻批免费40分钟无码 | 好男人社区资源 | 精品久久久久久人妻无码中文字幕 | 亚洲色www成人永久网址 | 久久无码中文字幕免费影院蜜桃 | 国产精品久久久久久亚洲影视内衣 | 日本又色又爽又黄的a片18禁 | 麻豆精品国产精华精华液好用吗 | 亚洲の无码国产の无码影院 | 久久久久久亚洲精品a片成人 | 内射白嫩少妇超碰 | 性欧美疯狂xxxxbbbb | 精品久久8x国产免费观看 | 2019午夜福利不卡片在线 | 牛和人交xxxx欧美 | 西西人体www44rt大胆高清 | 亚洲精品久久久久久一区二区 | 东京热男人av天堂 | 亚洲综合久久一区二区 | 两性色午夜免费视频 | 国产精品人妻一区二区三区四 | 国产精品国产自线拍免费软件 | 美女黄网站人色视频免费国产 | 性生交大片免费看女人按摩摩 | 精品国产一区二区三区四区 | 国产口爆吞精在线视频 | 国产av人人夜夜澡人人爽麻豆 | 一本久久伊人热热精品中文字幕 | 欧美 日韩 人妻 高清 中文 | 国产性生大片免费观看性 | 日本一区二区三区免费高清 | 未满小14洗澡无码视频网站 | 99久久人妻精品免费一区 | 成人精品视频一区二区 | 精品久久久久久人妻无码中文字幕 | 精品久久久久久人妻无码中文字幕 | 秋霞特色aa大片 | 日本一卡二卡不卡视频查询 | 内射老妇bbwx0c0ck | 国产无遮挡又黄又爽又色 | 精品无码一区二区三区的天堂 | 亚洲人成网站免费播放 | 特黄特色大片免费播放器图片 | 久久综合给久久狠狠97色 | 麻花豆传媒剧国产免费mv在线 | 婷婷色婷婷开心五月四房播播 | 免费无码av一区二区 | 亚洲欧美色中文字幕在线 | 亚洲自偷精品视频自拍 | 中文字幕乱妇无码av在线 | 日本爽爽爽爽爽爽在线观看免 | 亚洲性无码av中文字幕 | 国产sm调教视频在线观看 | 性欧美videos高清精品 | 国产超碰人人爽人人做人人添 | 99久久久无码国产精品免费 | 精品无码国产一区二区三区av | 久久无码中文字幕免费影院蜜桃 | 国产热a欧美热a在线视频 | 日日碰狠狠躁久久躁蜜桃 | 初尝人妻少妇中文字幕 | 精品国产一区二区三区av 性色 | 国产内射爽爽大片视频社区在线 | 欧美人与善在线com | 日本熟妇乱子伦xxxx | 在线精品亚洲一区二区 | 色一情一乱一伦一区二区三欧美 | 天海翼激烈高潮到腰振不止 | 中文久久乱码一区二区 | 波多野结衣乳巨码无在线观看 | 性色欲情网站iwww九文堂 | 中文字幕乱码人妻二区三区 | 精品一区二区不卡无码av | 欧美熟妇另类久久久久久多毛 | 性开放的女人aaa片 | 精品久久久久香蕉网 | 国产欧美精品一区二区三区 | 久久久久久国产精品无码下载 | 漂亮人妻洗澡被公强 日日躁 | 久久午夜无码鲁丝片秋霞 | 亚洲无人区一区二区三区 | 国产尤物精品视频 | 亚洲国精产品一二二线 | 无码任你躁久久久久久久 | 国产做国产爱免费视频 | 欧美亚洲日韩国产人成在线播放 | 欧美放荡的少妇 | 88国产精品欧美一区二区三区 | 国产亚洲精品久久久久久久久动漫 | 三级4级全黄60分钟 | 国产精品久久久久7777 | 亚洲成a人片在线观看日本 | 久久国产精品偷任你爽任你 | 国产97色在线 | 免 | 麻豆精产国品 | 欧美熟妇另类久久久久久不卡 | 荫蒂添的好舒服视频囗交 | 国产两女互慰高潮视频在线观看 | 一区二区三区乱码在线 | 欧洲 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 中文字幕日韩精品一区二区三区 | 国产精品无码一区二区桃花视频 | 日日摸夜夜摸狠狠摸婷婷 | 国产成人综合在线女婷五月99播放 | 夜先锋av资源网站 | 天堂在线观看www | 亚洲s色大片在线观看 | 2019nv天堂香蕉在线观看 | 国产三级精品三级男人的天堂 | 久久综合狠狠综合久久综合88 | 中文字幕乱码人妻二区三区 | 国产高清av在线播放 | 国产精品鲁鲁鲁 | 国产一区二区三区影院 | 国产成人精品久久亚洲高清不卡 | 国产麻豆精品一区二区三区v视界 | 免费无码一区二区三区蜜桃大 | 婷婷综合久久中文字幕蜜桃三电影 | 97人妻精品一区二区三区 | 欧美性黑人极品hd | 欧洲熟妇色 欧美 | 牛和人交xxxx欧美 | 日韩精品久久久肉伦网站 | 亚洲成a人一区二区三区 | 亚洲乱码国产乱码精品精 | 免费国产成人高清在线观看网站 | 免费无码的av片在线观看 | 永久免费观看国产裸体美女 | 国产亚洲日韩欧美另类第八页 | 国产美女精品一区二区三区 | 色老头在线一区二区三区 | 国产香蕉尹人综合在线观看 | 国产成人无码av在线影院 | 亚洲国产精品久久人人爱 | 亚洲a无码综合a国产av中文 | 久精品国产欧美亚洲色aⅴ大片 | 在教室伦流澡到高潮hnp视频 | 国产成人综合美国十次 | 国精品人妻无码一区二区三区蜜柚 | 亚洲 a v无 码免 费 成 人 a v | 亚洲一区二区三区无码久久 | 久久久久99精品成人片 | 国内揄拍国内精品少妇国语 | 亚洲欧美国产精品专区久久 | 成年美女黄网站色大免费视频 | 国语精品一区二区三区 | 窝窝午夜理论片影院 | 伊人色综合久久天天小片 | 久在线观看福利视频 | 国产亚洲精品久久久ai换 | 欧美怡红院免费全部视频 | 草草网站影院白丝内射 | 亚洲熟女一区二区三区 | 国产精品久久久久久亚洲毛片 | 国产情侣作爱视频免费观看 | 国产偷抇久久精品a片69 | 大肉大捧一进一出视频出来呀 | av人摸人人人澡人人超碰下载 | 内射老妇bbwx0c0ck | 欧美日韩一区二区免费视频 | 亚洲乱码国产乱码精品精 | а√资源新版在线天堂 | 免费看少妇作爱视频 | 精品乱码久久久久久久 | 亚洲日韩中文字幕在线播放 | 色情久久久av熟女人妻网站 | 天天综合网天天综合色 | 成 人 网 站国产免费观看 | 1000部夫妻午夜免费 | 2019nv天堂香蕉在线观看 | 中文字幕无码日韩欧毛 | 欧美xxxx黑人又粗又长 | 国产人妻精品一区二区三区 | 国产在线一区二区三区四区五区 | 亚洲乱码国产乱码精品精 | av无码电影一区二区三区 | 日本熟妇大屁股人妻 | 久久久婷婷五月亚洲97号色 | 国产精品内射视频免费 | 国产无av码在线观看 | 中文字幕无码av波多野吉衣 | 香蕉久久久久久av成人 | 极品尤物被啪到呻吟喷水 | 亚洲爆乳无码专区 | 亚洲中文字幕在线观看 | 玩弄人妻少妇500系列视频 | 中文字幕中文有码在线 | 国产无套内射久久久国产 | a片免费视频在线观看 | 久久精品中文字幕大胸 | 国产精品无码一区二区桃花视频 | 沈阳熟女露脸对白视频 | 国产亚洲精品久久久久久久久动漫 | 正在播放东北夫妻内射 | 无码av免费一区二区三区试看 | 久久无码专区国产精品s | 国产绳艺sm调教室论坛 | 性色av无码免费一区二区三区 | 久久久国产精品无码免费专区 | 亚洲 高清 成人 动漫 | 亚洲自偷自拍另类第1页 | 成人片黄网站色大片免费观看 | 国产一精品一av一免费 | 思思久久99热只有频精品66 | 一本久久a久久精品亚洲 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 久久国产36精品色熟妇 | 久久久久人妻一区精品色欧美 | 午夜精品一区二区三区在线观看 | 精品久久久久香蕉网 | 欧美亚洲国产一区二区三区 | 成人一在线视频日韩国产 | 中文字幕 人妻熟女 | 红桃av一区二区三区在线无码av | 无遮无挡爽爽免费视频 | 久久国产自偷自偷免费一区调 | 国产人妻大战黑人第1集 | 久久无码专区国产精品s | 国产午夜视频在线观看 | 亚洲爆乳大丰满无码专区 | 亚洲区小说区激情区图片区 | 免费人成网站视频在线观看 | 国产性生大片免费观看性 | 蜜桃无码一区二区三区 | 最近中文2019字幕第二页 | 伊在人天堂亚洲香蕉精品区 | 成人影院yy111111在线观看 | 俺去俺来也在线www色官网 | 国产无遮挡吃胸膜奶免费看 | 图片小说视频一区二区 | 欧美怡红院免费全部视频 | 网友自拍区视频精品 | 国产香蕉尹人综合在线观看 | 未满成年国产在线观看 | 2019午夜福利不卡片在线 | 国产人妻人伦精品 | 老司机亚洲精品影院 | 黑人巨大精品欧美一区二区 | 国产va免费精品观看 | 扒开双腿吃奶呻吟做受视频 | 亚拍精品一区二区三区探花 | 国产精品爱久久久久久久 | 天堂亚洲2017在线观看 | 精品久久久久久人妻无码中文字幕 | 久久综合给久久狠狠97色 | 亚洲综合无码久久精品综合 | 女人高潮内射99精品 | 亚洲第一无码av无码专区 | 丝袜美腿亚洲一区二区 | 亚洲一区二区三区香蕉 | 性生交大片免费看女人按摩摩 | 国产熟女一区二区三区四区五区 | 国产人妻精品午夜福利免费 | yw尤物av无码国产在线观看 | 久久精品一区二区三区四区 | 欧美人与善在线com | 自拍偷自拍亚洲精品被多人伦好爽 | 宝宝好涨水快流出来免费视频 | 欧美老熟妇乱xxxxx | 国产精品亚洲综合色区韩国 | 俺去俺来也www色官网 | 国产亚洲日韩欧美另类第八页 | 成人无码精品1区2区3区免费看 | 女人被爽到呻吟gif动态图视看 | 国产激情无码一区二区app | 日韩亚洲欧美中文高清在线 | 岛国片人妻三上悠亚 | 国产午夜精品一区二区三区嫩草 | 在线观看免费人成视频 | 色窝窝无码一区二区三区色欲 | 国精品人妻无码一区二区三区蜜柚 | 乱码av麻豆丝袜熟女系列 | 精品一区二区不卡无码av | 在线天堂新版最新版在线8 | 内射后入在线观看一区 | 国产无遮挡又黄又爽又色 | 国产精品va在线观看无码 | 国产suv精品一区二区五 | 无码人妻av免费一区二区三区 | 成人免费视频视频在线观看 免费 | 人人妻人人藻人人爽欧美一区 | 精品国产国产综合精品 | 国产精品va在线播放 | 久久精品人人做人人综合试看 | 久久精品国产一区二区三区肥胖 | 性啪啪chinese东北女人 | 久久综合网欧美色妞网 | 亚洲第一无码av无码专区 | 欧洲精品码一区二区三区免费看 | 一本久久伊人热热精品中文字幕 | 成年美女黄网站色大免费全看 | 三上悠亚人妻中文字幕在线 | 国产免费观看黄av片 | 日韩人妻无码中文字幕视频 | 男女超爽视频免费播放 | 色欲久久久天天天综合网精品 | 成人动漫在线观看 | 精品久久久久久亚洲精品 | 宝宝好涨水快流出来免费视频 | 人人妻人人澡人人爽人人精品 | 久久国产劲爆∧v内射 | 国产一区二区三区四区五区加勒比 | 国产精品福利视频导航 | 少妇无码一区二区二三区 | 国产精品毛片一区二区 | 色五月丁香五月综合五月 | 无码吃奶揉捏奶头高潮视频 | 亚洲国产精品久久久久久 | 2020久久香蕉国产线看观看 | 精品久久综合1区2区3区激情 | 欧美丰满熟妇xxxx | 国产亚洲精品精品国产亚洲综合 | 色综合久久中文娱乐网 | 亚洲国产精品一区二区第一页 | 极品嫩模高潮叫床 | 久久精品女人天堂av免费观看 | 3d动漫精品啪啪一区二区中 | 蜜臀av无码人妻精品 | 久久精品中文字幕一区 | 国产亚洲精品久久久闺蜜 | a片免费视频在线观看 | 亚洲 欧美 激情 小说 另类 | 少妇被粗大的猛进出69影院 | 免费国产成人高清在线观看网站 | 亚洲午夜福利在线观看 | 在线精品亚洲一区二区 | 亚洲另类伦春色综合小说 | 国产精品久久久久久久影院 | 国产精品美女久久久 | 牲交欧美兽交欧美 | 国产午夜视频在线观看 | 国产成人无码一二三区视频 | 麻豆精品国产精华精华液好用吗 | 欧美人与禽zoz0性伦交 | 国产真人无遮挡作爱免费视频 | 麻豆md0077饥渴少妇 | 日日橹狠狠爱欧美视频 | 日韩av无码一区二区三区不卡 | 大地资源网第二页免费观看 | 欧美精品无码一区二区三区 | 亚洲日韩av一区二区三区四区 | 国产成人精品一区二区在线小狼 | 国产成人无码av在线影院 | 正在播放东北夫妻内射 | 福利一区二区三区视频在线观看 | 99精品国产综合久久久久五月天 | 国产无遮挡又黄又爽免费视频 | 国产人妻久久精品二区三区老狼 | 日日噜噜噜噜夜夜爽亚洲精品 | 国产成人午夜福利在线播放 | 亚洲色偷偷偷综合网 | 性欧美疯狂xxxxbbbb | 亚洲热妇无码av在线播放 | 国产欧美精品一区二区三区 | 久久久久久国产精品无码下载 | 男女超爽视频免费播放 | 国内精品久久毛片一区二区 | 欧美熟妇另类久久久久久多毛 | 野外少妇愉情中文字幕 | 日韩人妻无码一区二区三区久久99 | 少妇性l交大片欧洲热妇乱xxx | 国产无套内射久久久国产 | 熟妇人妻中文av无码 | 久久久久久久女国产乱让韩 | av无码不卡在线观看免费 | 亚洲爆乳大丰满无码专区 | 日本一本二本三区免费 | 久久99热只有频精品8 | 亚洲综合另类小说色区 | 欧美freesex黑人又粗又大 | 国产在线精品一区二区三区直播 | 夜夜高潮次次欢爽av女 | 国产绳艺sm调教室论坛 | 亚洲精品国产精品乱码不卡 | 一本久久a久久精品vr综合 | 国产黄在线观看免费观看不卡 | 成人欧美一区二区三区黑人 | 中文字幕人妻无码一区二区三区 | 一本久道久久综合婷婷五月 | 狠狠综合久久久久综合网 | 国产午夜精品一区二区三区嫩草 | 熟妇女人妻丰满少妇中文字幕 | 性欧美牲交xxxxx视频 | 中文字幕无码热在线视频 | 一个人看的视频www在线 | 国产人成高清在线视频99最全资源 | 5858s亚洲色大成网站www | 久久综合色之久久综合 | 天天燥日日燥 | 在线观看国产午夜福利片 | 久久亚洲精品中文字幕无男同 | 六十路熟妇乱子伦 | 一本大道久久东京热无码av | 一二三四社区在线中文视频 | 欧洲欧美人成视频在线 | 国产成人综合美国十次 | 乱中年女人伦av三区 | 亚洲男女内射在线播放 | 精品国产一区二区三区av 性色 | 无码av岛国片在线播放 | 水蜜桃色314在线观看 | 西西人体www44rt大胆高清 | 亚洲日韩一区二区三区 | 欧美日韩一区二区免费视频 | 亚洲第一无码av无码专区 | 精品国产福利一区二区 | 欧美国产亚洲日韩在线二区 | 少妇性荡欲午夜性开放视频剧场 | 性生交大片免费看l | 天干天干啦夜天干天2017 | 婷婷色婷婷开心五月四房播播 | 精品欧洲av无码一区二区三区 | 久久五月精品中文字幕 | 少妇激情av一区二区 | 天天做天天爱天天爽综合网 | 欧美黑人性暴力猛交喷水 | 熟妇人妻无乱码中文字幕 | 欧美freesex黑人又粗又大 | 一本色道久久综合亚洲精品不卡 | 丝袜 中出 制服 人妻 美腿 | 黑人大群体交免费视频 | 国产成人无码一二三区视频 | 中文字幕日韩精品一区二区三区 | 老司机亚洲精品影院 | 免费人成在线视频无码 | 四虎影视成人永久免费观看视频 | 国产精品内射视频免费 | 婷婷综合久久中文字幕蜜桃三电影 | 午夜福利一区二区三区在线观看 | 亚洲一区二区三区香蕉 | 狠狠色丁香久久婷婷综合五月 | 内射爽无广熟女亚洲 | 亚洲a无码综合a国产av中文 | 乱码午夜-极国产极内射 | 国产亚洲精品久久久闺蜜 | 精品厕所偷拍各类美女tp嘘嘘 | 六十路熟妇乱子伦 | 少妇无套内谢久久久久 | 九一九色国产 | 国产成人精品一区二区在线小狼 | 无码国产激情在线观看 | 啦啦啦www在线观看免费视频 | 精品国产av色一区二区深夜久久 | 又粗又大又硬毛片免费看 | 欧美野外疯狂做受xxxx高潮 | 亚洲国产欧美在线成人 | 成人无码精品1区2区3区免费看 | 无码精品国产va在线观看dvd | 美女扒开屁股让男人桶 | 人人妻人人澡人人爽欧美一区 | 色 综合 欧美 亚洲 国产 | 国产精品亚洲а∨无码播放麻豆 | 国产午夜手机精彩视频 | 人人澡人人妻人人爽人人蜜桃 | 荡女精品导航 | 中文字幕精品av一区二区五区 | 国产黄在线观看免费观看不卡 | 98国产精品综合一区二区三区 | 波多野结衣av在线观看 | 男女猛烈xx00免费视频试看 | 成人aaa片一区国产精品 | 一本色道久久综合亚洲精品不卡 | 日本又色又爽又黄的a片18禁 | 国产精品资源一区二区 | 丰满诱人的人妻3 | 无码国内精品人妻少妇 | 国产精品理论片在线观看 | 欧美性生交xxxxx久久久 | 东京热一精品无码av | 亚洲日韩精品欧美一区二区 | 永久黄网站色视频免费直播 | 无码午夜成人1000部免费视频 | 亚洲狠狠色丁香婷婷综合 | 影音先锋中文字幕无码 | 亚洲乱码中文字幕在线 | 精品久久久久久人妻无码中文字幕 | 国产真人无遮挡作爱免费视频 | 黑人大群体交免费视频 | 日本饥渴人妻欲求不满 | 日日碰狠狠丁香久燥 | 国内少妇偷人精品视频 | 国产香蕉尹人视频在线 | 成人免费视频视频在线观看 免费 | 国产精品久久久av久久久 | 性开放的女人aaa片 | 亚洲精品一区二区三区在线观看 | 麻花豆传媒剧国产免费mv在线 | 全黄性性激高免费视频 | 亚洲区小说区激情区图片区 | 无码乱肉视频免费大全合集 | 亚洲欧美国产精品专区久久 | 国产综合在线观看 | 5858s亚洲色大成网站www | 99久久久国产精品无码免费 | 人妻夜夜爽天天爽三区 | 久久视频在线观看精品 | 亚洲色无码一区二区三区 | 少妇太爽了在线观看 | 无码人妻精品一区二区三区下载 | 亚洲 高清 成人 动漫 | 少妇无码吹潮 | 久久午夜夜伦鲁鲁片无码免费 | 少妇无套内谢久久久久 | 国产真实乱对白精彩久久 | 夜精品a片一区二区三区无码白浆 | 中文亚洲成a人片在线观看 | 无码任你躁久久久久久久 | 亚洲精品www久久久 | 日日鲁鲁鲁夜夜爽爽狠狠 | 精品人人妻人人澡人人爽人人 | 亚洲中文字幕在线观看 | 黑森林福利视频导航 | 在线观看免费人成视频 | 一本久道高清无码视频 | 国产人成高清在线视频99最全资源 | 日韩av无码中文无码电影 | 国产精品99久久精品爆乳 | 7777奇米四色成人眼影 | 装睡被陌生人摸出水好爽 | 色婷婷综合激情综在线播放 | 国产疯狂伦交大片 | 欧美怡红院免费全部视频 | 亚洲爆乳大丰满无码专区 | 无人区乱码一区二区三区 | 波多野结衣aⅴ在线 | 欧美日韩久久久精品a片 | 国产性生大片免费观看性 | aa片在线观看视频在线播放 | 国产suv精品一区二区五 | 四虎永久在线精品免费网址 | 国产高清不卡无码视频 | 国产精品久久精品三级 | 成人无码视频在线观看网站 | 大色综合色综合网站 | 国产极品美女高潮无套在线观看 | 日本爽爽爽爽爽爽在线观看免 | 国产va免费精品观看 | 狠狠色噜噜狠狠狠狠7777米奇 | v一区无码内射国产 | 熟妇人妻无乱码中文字幕 | 动漫av一区二区在线观看 | 国产高潮视频在线观看 | 精品乱码久久久久久久 | 色诱久久久久综合网ywww | 日韩亚洲欧美中文高清在线 | 人妻插b视频一区二区三区 | 成人免费视频在线观看 | 亚洲色成人中文字幕网站 | 国产真实乱对白精彩久久 | 亚洲啪av永久无码精品放毛片 | 日韩av无码一区二区三区不卡 | 午夜熟女插插xx免费视频 | 理论片87福利理论电影 | 日韩av无码一区二区三区 | 国产亚洲精品久久久久久久 | 俺去俺来也www色官网 | 久久99精品国产.久久久久 | 亚洲欧美精品伊人久久 | 亚洲成a人片在线观看日本 | 国产真实乱对白精彩久久 | 日韩欧美中文字幕公布 | 国产性生大片免费观看性 | 亚洲人成影院在线观看 | 熟妇人妻中文av无码 | 欧美激情综合亚洲一二区 | 亚洲精品久久久久久久久久久 | 国产乡下妇女做爰 | 欧美日韩在线亚洲综合国产人 | 国模大胆一区二区三区 | 亚洲欧美国产精品专区久久 | 国产精品香蕉在线观看 | 超碰97人人射妻 | 久久久久av无码免费网 | 国产人妻人伦精品 | 久9re热视频这里只有精品 | 国产口爆吞精在线视频 | 天堂无码人妻精品一区二区三区 | 午夜精品一区二区三区的区别 | 一本大道伊人av久久综合 | 性欧美videos高清精品 | 国产黄在线观看免费观看不卡 | 日本大香伊一区二区三区 | 丰满岳乱妇在线观看中字无码 | 熟妇女人妻丰满少妇中文字幕 | 在教室伦流澡到高潮hnp视频 | 日本va欧美va欧美va精品 | 久久精品视频在线看15 | 色欲久久久天天天综合网精品 | 性色av无码免费一区二区三区 | 日韩无套无码精品 | 亚洲a无码综合a国产av中文 | 鲁一鲁av2019在线 | 无码国产乱人伦偷精品视频 | 日本精品人妻无码免费大全 | 久久精品一区二区三区四区 | 18黄暴禁片在线观看 | 日本肉体xxxx裸交 | 成人aaa片一区国产精品 | 东京一本一道一二三区 | 97夜夜澡人人双人人人喊 | 日韩少妇白浆无码系列 | 国产亚洲欧美日韩亚洲中文色 | 曰韩少妇内射免费播放 | 黑人粗大猛烈进出高潮视频 | 精品国产成人一区二区三区 | 国产成人精品久久亚洲高清不卡 | 中文字幕av日韩精品一区二区 | 黑人巨大精品欧美黑寡妇 | 欧美 日韩 人妻 高清 中文 | 亚洲国产精品一区二区美利坚 | 亚洲成av人在线观看网址 | 波多野结衣乳巨码无在线观看 | 成人免费视频一区二区 | 久久精品国产精品国产精品污 | 中文字幕人妻无码一夲道 | 99久久婷婷国产综合精品青草免费 | 成人无码视频在线观看网站 | 欧美兽交xxxx×视频 | 国内精品久久毛片一区二区 | 国产av一区二区精品久久凹凸 | 色五月五月丁香亚洲综合网 | 国产精品亚洲专区无码不卡 | 日本大乳高潮视频在线观看 | 少妇无码一区二区二三区 | 中文无码成人免费视频在线观看 | 国产办公室秘书无码精品99 | 精品亚洲成av人在线观看 | 亚洲色欲色欲欲www在线 | 波多野42部无码喷潮在线 | 国产精品亚洲а∨无码播放麻豆 | 色综合久久网 | av在线亚洲欧洲日产一区二区 | 欧美性猛交内射兽交老熟妇 | 嫩b人妻精品一区二区三区 | 欧美人与善在线com | 国产无套粉嫩白浆在线 | 亚洲欧美精品aaaaaa片 | 国产 浪潮av性色四虎 | 国产精品久久久久久亚洲影视内衣 | 成 人 免费观看网站 | 老子影院午夜伦不卡 | 女人被男人爽到呻吟的视频 | 午夜精品一区二区三区的区别 | 精品无人国产偷自产在线 | 无码任你躁久久久久久久 | 国产又爽又黄又刺激的视频 | 亚洲日韩乱码中文无码蜜桃臀网站 | 四虎影视成人永久免费观看视频 | 老熟妇仑乱视频一区二区 | 亚洲综合色区中文字幕 | 久久久精品成人免费观看 | 国产亚洲欧美在线专区 | 一区二区三区乱码在线 | 欧洲 | 亚洲中文字幕久久无码 | 131美女爱做视频 | 亚洲精品www久久久 | 一本久久a久久精品亚洲 | 中文字幕+乱码+中文字幕一区 | 国产无遮挡吃胸膜奶免费看 | 偷窥日本少妇撒尿chinese | 午夜精品一区二区三区在线观看 | 国产乱人无码伦av在线a | 无码任你躁久久久久久久 | 国产在线无码精品电影网 | 十八禁真人啪啪免费网站 | 福利一区二区三区视频在线观看 | 高清不卡一区二区三区 | 无码av岛国片在线播放 | 台湾无码一区二区 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产在线无码精品电影网 | 人妻互换免费中文字幕 | a国产一区二区免费入口 | 国产一区二区不卡老阿姨 | 国产网红无码精品视频 | 久久久久亚洲精品男人的天堂 | 亚洲大尺度无码无码专区 | 日本丰满熟妇videos | 久久亚洲精品成人无码 | 亚洲人成人无码网www国产 | 国产 精品 自在自线 | 4hu四虎永久在线观看 | 亚洲国产高清在线观看视频 | 精品久久久无码人妻字幂 | 精品夜夜澡人妻无码av蜜桃 | 国内揄拍国内精品少妇国语 | 日本又色又爽又黄的a片18禁 | 欧美 亚洲 国产 另类 | 玩弄中年熟妇正在播放 | 亚洲aⅴ无码成人网站国产app | www一区二区www免费 | 国产精品丝袜黑色高跟鞋 | 最新国产乱人伦偷精品免费网站 | 对白脏话肉麻粗话av | 久久精品女人天堂av免费观看 | 久久久久国色av免费观看性色 | 亚洲国产精品久久久天堂 | 亚洲日本一区二区三区在线 | 激情综合激情五月俺也去 | 好爽又高潮了毛片免费下载 | 国产香蕉97碰碰久久人人 | 欧美精品一区二区精品久久 | 荫蒂添的好舒服视频囗交 | 人人妻人人澡人人爽精品欧美 | 亚洲精品久久久久avwww潮水 | 67194成是人免费无码 | 18无码粉嫩小泬无套在线观看 | 乌克兰少妇xxxx做受 | 丰满人妻一区二区三区免费视频 | 岛国片人妻三上悠亚 | 一本久道久久综合狠狠爱 | 婷婷综合久久中文字幕蜜桃三电影 | 久久精品国产99精品亚洲 | 精品无码成人片一区二区98 | 国产亚洲精品久久久久久大师 | 国产成人综合美国十次 | 色狠狠av一区二区三区 | 日本xxxx色视频在线观看免费 | 中文字幕无线码 | 国产色xx群视频射精 | 激情内射日本一区二区三区 | 青青草原综合久久大伊人精品 | 免费人成在线视频无码 | 国产精品久久国产三级国 | 九九久久精品国产免费看小说 | 久久午夜夜伦鲁鲁片无码免费 | 亚洲精品国偷拍自产在线观看蜜桃 | 国产精品久久久一区二区三区 | 国产成人av免费观看 | 久久久无码中文字幕久... | 精品国产av色一区二区深夜久久 | 国产一区二区三区精品视频 | 亚洲人交乣女bbw | 色偷偷人人澡人人爽人人模 | 成人无码影片精品久久久 | 97精品人妻一区二区三区香蕉 | 性欧美牲交在线视频 | 蜜臀aⅴ国产精品久久久国产老师 | 两性色午夜免费视频 | 一本一道久久综合久久 | 国产在线精品一区二区高清不卡 | 人人澡人人妻人人爽人人蜜桃 | 中文无码精品a∨在线观看不卡 | 久久久久亚洲精品中文字幕 | 高潮毛片无遮挡高清免费视频 | 欧美国产日韩久久mv | 蜜臀aⅴ国产精品久久久国产老师 | 欧洲极品少妇 | 亚洲国产av精品一区二区蜜芽 | 无码福利日韩神码福利片 | 国产亚洲欧美日韩亚洲中文色 | 精品成人av一区二区三区 | 一本无码人妻在中文字幕免费 | 永久免费精品精品永久-夜色 | 国产成人无码av一区二区 | 亚洲国产精品毛片av不卡在线 | 国产农村乱对白刺激视频 | 麻豆md0077饥渴少妇 | 亚洲精品无码人妻无码 | 中文字幕中文有码在线 | 思思久久99热只有频精品66 | 久久无码专区国产精品s | 伊人久久婷婷五月综合97色 | 色一情一乱一伦一区二区三欧美 | 免费无码的av片在线观看 | 久久97精品久久久久久久不卡 | 在线看片无码永久免费视频 | 中文字幕无码乱人伦 | 一二三四在线观看免费视频 | 亚洲熟妇色xxxxx欧美老妇 | 成人片黄网站色大片免费观看 | 97久久精品无码一区二区 | 久久这里只有精品视频9 | 国产艳妇av在线观看果冻传媒 | 久久亚洲日韩精品一区二区三区 | 在线视频网站www色 | 理论片87福利理论电影 | 人妻夜夜爽天天爽三区 | 亚洲精品国偷拍自产在线麻豆 | 国产精品无码一区二区桃花视频 | 欧美丰满老熟妇xxxxx性 | 国产成人精品三级麻豆 | 天天拍夜夜添久久精品大 | 亚洲国产精品无码久久久久高潮 | 久久精品女人天堂av免费观看 | 又紧又大又爽精品一区二区 | 丝袜美腿亚洲一区二区 | 全球成人中文在线 | 人妻少妇精品久久 | 国产无遮挡吃胸膜奶免费看 | 国产97在线 | 亚洲 | 天天躁日日躁狠狠躁免费麻豆 | 亚洲乱亚洲乱妇50p | 亚洲成色www久久网站 | 亚洲熟悉妇女xxx妇女av | 少妇性荡欲午夜性开放视频剧场 | 国产免费久久精品国产传媒 | 青青青爽视频在线观看 | 亚洲国产欧美日韩精品一区二区三区 | 国产人妻人伦精品1国产丝袜 | 精品国偷自产在线 | 5858s亚洲色大成网站www | 荫蒂添的好舒服视频囗交 | 国产熟妇高潮叫床视频播放 | 国内精品人妻无码久久久影院 | 无码人妻黑人中文字幕 | 曰韩无码二三区中文字幕 | 欧美人与牲动交xxxx | 好爽又高潮了毛片免费下载 | 精品无码国产自产拍在线观看蜜 | 久久国产精品精品国产色婷婷 | 综合人妻久久一区二区精品 | 少妇愉情理伦片bd | 无码精品国产va在线观看dvd | 国产av久久久久精东av | 无码人妻丰满熟妇区毛片18 | 欧美日韩一区二区免费视频 | 亚洲高清偷拍一区二区三区 | 国产精品办公室沙发 | 鲁大师影院在线观看 | 国产黄在线观看免费观看不卡 | 人妻少妇精品久久 | 久久国产精品_国产精品 | 中文字幕乱码人妻无码久久 | 免费看男女做好爽好硬视频 | 中文字幕人妻无码一区二区三区 | 国产97色在线 | 免 | 亚洲日本va午夜在线电影 | 国产精品无码成人午夜电影 | 成人三级无码视频在线观看 | 熟女俱乐部五十路六十路av | 秋霞成人午夜鲁丝一区二区三区 | 亚洲高清偷拍一区二区三区 | 天天躁夜夜躁狠狠是什么心态 | 激情内射亚州一区二区三区爱妻 | 少妇厨房愉情理9仑片视频 | 久久无码专区国产精品s | 丰满少妇人妻久久久久久 | 天天摸天天透天天添 | 无码精品人妻一区二区三区av | 国产乱人偷精品人妻a片 | 免费看男女做好爽好硬视频 | 亚洲熟熟妇xxxx | 亚洲午夜福利在线观看 | 中文精品久久久久人妻不卡 | 国产成人综合色在线观看网站 | 999久久久国产精品消防器材 | 麻豆国产人妻欲求不满 | 网友自拍区视频精品 | 亚洲国产欧美日韩精品一区二区三区 | 天下第一社区视频www日本 | 久久久婷婷五月亚洲97号色 | 97夜夜澡人人爽人人喊中国片 | 亚洲精品午夜国产va久久成人 | 欧美黑人性暴力猛交喷水 | 亚洲综合伊人久久大杳蕉 | 日产国产精品亚洲系列 | 亚洲成色在线综合网站 | 国语自产偷拍精品视频偷 | 2019午夜福利不卡片在线 | 精品国产福利一区二区 | 人妻少妇精品无码专区二区 | 亚洲大尺度无码无码专区 | 人人爽人人澡人人人妻 | 乱人伦人妻中文字幕无码久久网 | 成人无码视频免费播放 | 日韩欧美中文字幕在线三区 | 性啪啪chinese东北女人 | 无码国产激情在线观看 | 性色欲网站人妻丰满中文久久不卡 | 亚洲s码欧洲m码国产av | 日韩精品无码一本二本三本色 | 国产农村妇女高潮大叫 | 欧美午夜特黄aaaaaa片 | 国内精品久久毛片一区二区 | 好男人www社区 | 国产精品久久久久久亚洲毛片 | 亚洲gv猛男gv无码男同 | 老司机亚洲精品影院 | 久久久www成人免费毛片 | 国产精品福利视频导航 | 亚洲午夜久久久影院 | 精品偷拍一区二区三区在线看 | 国产精品毛多多水多 | 中文字幕人成乱码熟女app | 国产亚洲精品久久久久久久 | 99久久无码一区人妻 | 亚洲国产一区二区三区在线观看 | 欧美猛少妇色xxxxx | 中文字幕无码av激情不卡 | 免费观看的无遮挡av | 亚洲国产精品久久久久久 | 亚洲爆乳大丰满无码专区 | 国产精品久久福利网站 | 欧美熟妇另类久久久久久不卡 | 三级4级全黄60分钟 | 欧美乱妇无乱码大黄a片 | 97夜夜澡人人双人人人喊 | 成在人线av无码免观看麻豆 | 国产美女精品一区二区三区 | 亚洲精品国产品国语在线观看 | 日本va欧美va欧美va精品 | 国产精品丝袜黑色高跟鞋 | 东京热男人av天堂 | 亚洲精品综合一区二区三区在线 | a国产一区二区免费入口 | 精品人妻人人做人人爽 | 成年美女黄网站色大免费全看 | 人妻夜夜爽天天爽三区 | 国产超级va在线观看视频 | 亚拍精品一区二区三区探花 | 亚洲成熟女人毛毛耸耸多 | 少妇高潮一区二区三区99 | 国产人妻大战黑人第1集 | 色婷婷综合中文久久一本 | 伊在人天堂亚洲香蕉精品区 | 久久无码中文字幕免费影院蜜桃 | 久久综合九色综合97网 | 精品水蜜桃久久久久久久 | 日韩av无码一区二区三区 | 国产美女精品一区二区三区 | 狠狠色噜噜狠狠狠7777奇米 | 亚洲一区二区三区无码久久 | 日本熟妇浓毛 | 国产精品二区一区二区aⅴ污介绍 | 国产真实乱对白精彩久久 | 久久 国产 尿 小便 嘘嘘 | 亚洲一区二区三区偷拍女厕 | 99久久精品无码一区二区毛片 | 亚洲精品综合五月久久小说 | 国产莉萝无码av在线播放 | 六十路熟妇乱子伦 | 巨爆乳无码视频在线观看 | 亚洲另类伦春色综合小说 | 九月婷婷人人澡人人添人人爽 | 在线播放亚洲第一字幕 | 熟女俱乐部五十路六十路av | 无码成人精品区在线观看 | 亚洲精品成人av在线 | 国产亚洲精品久久久久久大师 | 精品无码一区二区三区的天堂 | 日韩av无码中文无码电影 | 色婷婷欧美在线播放内射 | 98国产精品综合一区二区三区 | 人妻无码αv中文字幕久久琪琪布 | 久久久久免费精品国产 | 成 人影片 免费观看 | 99久久99久久免费精品蜜桃 | 国产一区二区三区精品视频 | 人妻熟女一区 | 久久久精品欧美一区二区免费 | 中文精品久久久久人妻不卡 | 暴力强奷在线播放无码 | 欧美国产亚洲日韩在线二区 | 成人无码精品一区二区三区 | 丰满少妇熟乱xxxxx视频 | 日本成熟视频免费视频 | 国产舌乚八伦偷品w中 | 熟女俱乐部五十路六十路av | 清纯唯美经典一区二区 | 国产免费久久久久久无码 |