泛函分析——有界线性算子和函数
T(αx1+βx2)=αTx1+βTx2T\left(\alpha x_{1}+\beta x_{2}\right)=\alpha T x_{1}+\beta T x_{2}T(αx1?+βx2?)=αTx1?+βTx2? for all x1,x2∈Xx_{1}, x_{2} \in Xx1?,x2?∈X and all α,β∈F\alpha, \beta \in \mathbb{F}α,β∈F
線性算子T的值域
ran?(T)={y∈Y∣y=Txfor?some?x∈X}=TX\operatorname{ran}(T)=\{y \in Y \mid y=T x \text { for some } x \in X\}=T Xran(T)={y∈Y∣y=Tx?for?some?x∈X}=TX
線性算子T的核空間
N(T)=ker?(T)={x∈X:Tx=0}=T?1(0)\mathcal{N}(T)=\operatorname{ker}(T)=\{x \in X: T x=0\}=T^{-1}(0)N(T)=ker(T)={x∈X:Tx=0}=T?1(0)
賦范線性空間中線性操作算子的有界
Let XXX and YYY be normed linear spaces over the same field F\mathbb{F}F. A linear operator T:X→YT: X \rightarrow YT:X→Y is said to be bounded if there exists a constant M>0M>0M>0 such that
∥Tx∥≤M∥x∥for?all?x∈X.\|T x\| \leq M\|x\| \quad \text { for all } \quad x \in X . ∥Tx∥≤M∥x∥?for?all?x∈X.
賦范線性空間中線性操作算子的連續
An operator T:X→YT: X \rightarrow YT:X→Y is said to be continuous at x0∈Xx_{0} \in Xx0?∈X if given any ?>0\epsilon>0?>0 there is a δ>0\delta>0δ>0 such that
∥Tx?Tx0∥<?whenever?∥x?x0∥<δ.?\left\|T x-T x_{0}\right\|<\epsilon \quad \text { whenever }\left\|x-x_{0}\right\|<\delta \text { . } ∥Tx?Tx0?∥<??whenever?∥x?x0?∥<δ?.?
TTT is continuous on XXX if it is continuous at each point of XXX.
算子范數
Let XXX and YYY be normed linear spaces over the same field F\mathbb{F}F and let T∈B(X,Y)T \in \mathcal{B}(X, Y)T∈B(X,Y). The operator norm (or simply norm) of T,T,T, denoted by ∥T∥,\|T\|,∥T∥, is defined as
∥T∥=inf?{M:∥Tx∥≤M∥x∥,for?all?x∈X}\|T\|=\inf \{M:\|T x\| \leq M\|x\|, \quad \text { for all } x \in X\} ∥T∥=inf{M:∥Tx∥≤M∥x∥,?for?all?x∈X}
Since TTT is bounded, ∥T∥<∞\|T\|<\infty∥T∥<∞. Furthermore,
∥Tx∥≤∥T∥∥x∥for?all?x∈X\|T x\| \leq\|T\|\|x\| \quad \text { for all } \quad x \in X ∥Tx∥≤∥T∥∥x∥?for?all?x∈X
如果一個線性函數的值域是復數集,那么它就是一個線性函數。
總結
以上是生活随笔為你收集整理的泛函分析——有界线性算子和函数的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 泛函分析——赋范线性空间定义的概念
- 下一篇: python(numpy,pandas1