Scala模拟Spark分布式计算流程示例代码
生活随笔
收集整理的這篇文章主要介紹了
Scala模拟Spark分布式计算流程示例代码
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
場景
兩個Executor,分別接收來自Driver分發的任務(數據和計算邏輯)
代碼
Executor1
package com.zxl.bigdata.spark.core.testimport java.io.{InputStream, ObjectInputStream} import java.net.{ServerSocket, Socket}object Executor {def main(args: Array[String]): Unit = {// 啟動服務器,接收數據val server = new ServerSocket(9999)println("服務器啟動,等待接收數據")// 等待客戶端的連接val client: Socket = server.accept()val in: InputStream = client.getInputStreamval objIn = new ObjectInputStream(in)val task: SubTask = objIn.readObject().asInstanceOf[SubTask]val ints: List[Int] = task.compute()println("計算節點[9999]計算的結果為:" + ints)objIn.close()client.close()server.close()} }Executor2
package com.zxl.bigdata.spark.core.testimport java.io.{InputStream, ObjectInputStream} import java.net.{ServerSocket, Socket}object Executor2 {def main(args: Array[String]): Unit = {// 啟動服務器,接收數據val server = new ServerSocket(8888)println("服務器啟動,等待接收數據")// 等待客戶端的連接val client: Socket = server.accept()val in: InputStream = client.getInputStreamval objIn = new ObjectInputStream(in)val task: SubTask = objIn.readObject().asInstanceOf[SubTask]val ints: List[Int] = task.compute()println("計算節點[8888]計算的結果為:" + ints)objIn.close()client.close()server.close()} }Task
package com.zxl.bigdata.spark.core.testclass Task extends Serializable {val datas = List(1,2,3,4)//val logic = ( num:Int )=>{ num * 2 }val logic : (Int)=>Int = _ * 2}SubTask
package com.zxl.bigdata.spark.core.testclass SubTask extends Serializable {var datas : List[Int] = _var logic : (Int)=>Int = _// 計算def compute() = {datas.map(logic)} }Driver
package com.zxl.bigdata.spark.core.testimport java.io.{ObjectOutputStream, OutputStream} import java.net.Socketobject Driver {def main(args: Array[String]): Unit = {// 連接服務器val client1 = new Socket("localhost", 9999)val client2 = new Socket("localhost", 8888)val task = new Task()val out1: OutputStream = client1.getOutputStreamval objOut1 = new ObjectOutputStream(out1)val subTask = new SubTask()subTask.logic = task.logicsubTask.datas = task.datas.take(2)objOut1.writeObject(subTask)objOut1.flush()objOut1.close()client1.close()val out2: OutputStream = client2.getOutputStreamval objOut2 = new ObjectOutputStream(out2)val subTask1 = new SubTask()subTask1.logic = task.logicsubTask1.datas = task.datas.takeRight(2)objOut2.writeObject(subTask1)objOut2.flush()objOut2.close()client2.close()println("客戶端數據發送完畢")} }程序運行日志
總結
以上是生活随笔為你收集整理的Scala模拟Spark分布式计算流程示例代码的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【收藏】spark中map与mapPar
- 下一篇: docker,containerd,ru