方程组的几何解释 [MIT线代第一课pdf下载]
攻讀鑒于之前MIT的線代筆記沒有跟新完和很多童鞋希望pdf版本下載學(xué)習(xí),這里我把相關(guān)資源放到github上并重新更新完,希望對(duì)大家學(xué)習(xí)有所幫助。
pdf下載地址與Github地址:
https://github.com/yizhen20133868/MIT-Linear-Algebra-Notes
如有幫助,歡迎大家給個(gè)Star!!
該筆記總結(jié)了我們?cè)趯W(xué)習(xí)MIT線性代數(shù)課程的學(xué)習(xí)經(jīng)驗(yàn)和過程。
課程順序是按照麻省理工公開課的 Linear Algebra. 記錄的學(xué)習(xí)筆記。
本筆記作者介紹:丁坤博 東北大學(xué)本科生,推免至北京大學(xué)攻讀碩士
覃立波 哈爾濱工業(yè)大學(xué)SCIR實(shí)驗(yàn)室在讀博士生,導(dǎo)師車萬翔老師
一、知識(shí)概要
本節(jié)開始,我們一起來學(xué)習(xí)線性代數(shù)的有關(guān)知識(shí),首節(jié)我們從解方程談起,學(xué) 習(xí)線性代數(shù)的應(yīng)用之一就是求解復(fù)雜方程問題,本節(jié)核心之一即為從行圖像與列 圖像的角度解方程。
二.方程組的幾何解釋基礎(chǔ)
2.1 二維的行圖像
我們首先通過一個(gè)例子來從行圖像角度求解方程:
系數(shù)矩陣(A):將方程系數(shù)按行提取出來,構(gòu)成一個(gè)矩陣
未知向量(x):將方程未知數(shù)提取出來,按列構(gòu)成一個(gè)向量。
向量(b) :將等號(hào)右側(cè)結(jié)果按列提取,構(gòu)成一個(gè)向量
接下來我們通過行圖像來求解這個(gè)方程:
所謂行圖像,就是在系數(shù)矩陣上,一次取一行構(gòu)成方程,在坐標(biāo)系上作圖。
和我們?cè)诔醯葦?shù)學(xué)中學(xué)習(xí)的作圖求解方程的過程無異。
2.2 二維的列圖像
接下來我們使用列圖像求解此方程:
即尋找合適的 x,y 使得 x 倍的(2,-1) + y 倍的(-1,2)得到最終的向量(0,3)。在很 明顯能看出來,1 倍(2,-1) + 2 倍(-1,2)即滿足條件。反映在圖像上,明顯結(jié)果正確。
三.方程組的幾何解釋推廣
3.1 高維行圖像
如果繪制行圖像,很明顯這是一個(gè)三個(gè)平面相交得到一點(diǎn),我們想直接看出 這個(gè)點(diǎn)的性質(zhì)可謂是難上加難,比較靠譜的思路是先聯(lián)立其中兩個(gè)平面,使其相 交于一條直線,在研究這條直線與平面相交于哪個(gè)點(diǎn),最后得到點(diǎn)坐標(biāo)即為方程 的解。
這個(gè)求解過程對(duì)于三維來說或許還算合理,那四維呢?五維甚至更高維數(shù) 呢?直觀上很難直接繪制更高維數(shù)的圖像,這種行圖像受到的限制也越來越多。
3.2 高維列圖像
左側(cè)是線性組合,右側(cè)是合適的線性組合組成的結(jié)果,這樣一來思路就清晰多 了,“尋找線性組合”成為了解題關(guān)鍵。
很明顯這道題是一個(gè)特例,我們只需要取 x = 0,y = 0,z = 1。就得到了結(jié) 果,這在行圖像之中并不明顯。
當(dāng)然,之所以我們更推薦使用列圖像求解方程, 是因?yàn)檫@是一種更系統(tǒng)的求解方法,即尋找線性組合,而不用繪制每個(gè)行方程的 圖像之后尋找那個(gè)很難看出來的點(diǎn)。
另外一個(gè)優(yōu)勢在于,如果我們改變最后的結(jié)果 b,例如本題中,
那么我們 2 ?1 1 0 ?3 4 ?3 就重新尋找一個(gè)線性組合就夠了,但是如果我們使用的是行圖像呢?那意味著我 們要完全重畫三個(gè)平面圖像,就簡便性來講,兩種方法高下立判。
另外,還要注意的一點(diǎn)是對(duì)任意的 b 是不是都能求解 Ax = b 這個(gè)矩陣方程呢?也就是對(duì) 3*3 的系數(shù)矩陣 A,其列的線性組合是不是都可以覆蓋整個(gè)三維空間呢?對(duì)于我們舉的這個(gè)例子來說,一定可以,還有我們上面 2*2 的那個(gè)例子,也可以 覆蓋整個(gè)平面,但是有一些矩陣就是不行的,比如三個(gè)列向量本身就構(gòu)成了一個(gè) 平面,那么這樣的三個(gè)向量組合成的向量只能活動(dòng)在這個(gè)平面上,肯定無法覆蓋 2 ?1 1 一個(gè)三維空間,
這三個(gè)向量就構(gòu)
3.3 矩陣乘法
四、學(xué)習(xí)感悟
這部分內(nèi)容是對(duì)線性代數(shù)概念的初涉,從解方程談起,引進(jìn)列空間的概念,可 以發(fā)現(xiàn)從列空間角度將求解方程變化為求列向量的線性組合,這個(gè)方式更加科學(xué)。介紹了矩陣乘法,這部分內(nèi)容重在理解。
希望對(duì)大家有幫助~
下載如下資料可以訪問項(xiàng)目地址:
https://github.com/yizhen20133868/MIT-Linear-Algebra-Notes
關(guān)于本站
“機(jī)器學(xué)習(xí)初學(xué)者”公眾號(hào)由是黃海廣博士創(chuàng)建,黃博個(gè)人知乎粉絲22000+,github排名全球前110名(32000+)。本公眾號(hào)致力于人工智能方向的科普性文章,為初學(xué)者提供學(xué)習(xí)路線和基礎(chǔ)資料。原創(chuàng)作品有:吳恩達(dá)機(jī)器學(xué)習(xí)個(gè)人筆記、吳恩達(dá)深度學(xué)習(xí)筆記等。
往期精彩回顧
那些年做的學(xué)術(shù)公益-你不是一個(gè)人在戰(zhàn)斗
適合初學(xué)者入門人工智能的路線及資料下載
吳恩達(dá)機(jī)器學(xué)習(xí)課程筆記及資源(github標(biāo)星12000+,提供百度云鏡像)
吳恩達(dá)深度學(xué)習(xí)筆記及視頻等資源(github標(biāo)星8500+,提供百度云鏡像)
《統(tǒng)計(jì)學(xué)習(xí)方法》的python代碼實(shí)現(xiàn)(github標(biāo)星7200+)
精心整理和翻譯的機(jī)器學(xué)習(xí)的相關(guān)數(shù)學(xué)資料
首發(fā):深度學(xué)習(xí)入門寶典-《python深度學(xué)習(xí)》原文代碼中文注釋版及電子書
備注:加入本站微信群或者qq群,請(qǐng)回復(fù)“加群”
加入知識(shí)星球(4300+用戶,ID:92416895),請(qǐng)回復(fù)“知識(shí)星球”
總結(jié)
以上是生活随笔為你收集整理的方程组的几何解释 [MIT线代第一课pdf下载]的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 数据预处理|关于标准化和归一化的一切
- 下一篇: 【PySpark入门】手把手实现PySp