AI入门:Transfer Learning(迁移学习)
遷移學習是一種機器學習方法,就是把為任務 A 開發的模型作為初始點,重新使用在為任務 B 開發模型的過程中
Pokemon Dataset
通過網絡上收集寶可夢的圖片,制作圖像分類數據集。我收集了5種寶可夢,分別是皮卡丘,超夢,杰尼龜,小火龍,妙蛙種子
數據集鏈接:https://pan.baidu.com/s/1Kept7FF88lb8TqPZMD_Yxw提取碼:1sdd
一共有1168張寶可夢的圖片,其中皮卡丘234張,超夢239張,杰尼龜223張,小火龍238張,妙蛙種子234張
每個目錄由神奇寶貝名字命名,對應目錄下是該神奇寶貝的圖片,圖片的格式有jpg,png,jpeg三種
數據集的劃分如下(訓練集60%,驗證集20%,測試集20%)。這個比例不是針對每一類提取,而是針對總體的1168張
Load Data
在PyTorch中定義數據集主要涉及到兩個主要的類:Dataset和DataLoder
DataSet類
DataSet類是PyTorch中所有數據集加載類中都應該繼承的父類,它的兩個私有成員函數__len__()和__getitem__()必須被重載,否則將觸發錯誤提示
其中__len__()應該返回數據集的樣本數量,而__getitem__()實現通過索引返回樣本數據的功能
首先看一個自定義Dataset的例子
class NumbersDataset(Dataset):def __init__(self, training=True):if training:self.samples = list(range(1, 1001))else:self.samples = list(range(1001, 1501))def __len__(self):return len(self.samples)def __getitem__(self, idx):return self.samples[idx]然后需要對圖片做Preprocessing
Image Resize:224*224 for ResNet18
Data Argumentation:Rotate & Crop
Normalize:Mean & std
ToTensor
首先我們在__init__()函數里將name->label,這里的name就是文件夾的名字,然后拆分數據集,按照6:2:2的比例
class Pokemon(Dataset):def __init__(self, root, resize, model):super(Pokemon, self).__init__()self.root = rootself.resize = resizeself.name2label = {} # 將文件夾的名字映射為label(數字)for name in sorted(os.listdir(os.path.join(root))):if not os.path.isdir(os.path.join(root, name)):continueself.name2label[name] = len(self.name2label.keys())# image, labelself.images, self.labels = self.load_csv('images.csv')if model == 'train': # 60%self.images = self.images[:int(0.6*len(self.images))]self.labels = self.labels[:int(0.6*len(self.labels))]elif model == 'val': # 20%self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]else: # 20%self.images = self.images[int(0.8*len(self.images)):]self.labels = self.labels[int(0.8*len(self.labels)):]其中load_csv()函數的作用是將所有的圖片名(名字里包含完整的路徑)以及label都存到csv文件里,例如,有一個圖片的路徑是pokemon\\bulbasaur\\00000000.png,對應的label是0,那么csv就會寫入一行pokemon\\bulbasaur\\00000000.png, 0,總共寫入了1167行(有一張圖片既不是png,也不是jpg和jpeg,找不到,算了)。load_csv()函數具體如下所示
def load_csv(self, filename):if not os.path.exists(os.path.join(self.root, filename)):images = []for name in self.name2label.keys():images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))random.shuffle(images)with open(os.path.join(self.root, filename), mode='w', newline='') as f:writer = csv.writer(f)for img in images: # pokemon\\bulbasaur\\00000000.pngname = img.split(os.sep)[-2] # bulbasaurlabel = self.name2label[name]# pokemon\\bulbasaur\\00000000.png 0writer.writerow([img, label])print('writen into csv file:', filename)# read csv fileimages, labels = [], []with open(os.path.join(self.root, filename)) as f:reader = csv.reader(f)for row in reader:image, label = rowlabel = int(label)images.append(image)labels.append(label)assert len(images) == len(labels)return images, labels然后是__len__()函數的代碼
def __len__(self):return len(self.images)最后是__getitem__()函數的代碼,這個比較復雜,因為我們現在只有圖片的string path(字符串形式的路徑),要先轉成三通道的image data,這個利用PIL庫中的Image.open(path).convert('RGB')函數可以完成。圖片讀取出來以后,要經過一系列的transforms,具體代碼如下
def __getitem__(self, idx):# idx [0~len(images)]# self.images, self.labels# pokemon\\bulbasaur\\00000000.png 0img, label = self.images[idx], self.labels[idx]tf = transforms.Compose([lambda x:Image.open(x).convert('RGB'), # string path => image datatransforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),transforms.RandomRotation(15),transforms.CenterCrop(self.resize),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])img = tf(img)label = torch.tensor(label)return img, labelNormalize的參數是PyTorch推薦的,直接寫上就可以了
DataLoader類
Dataset類是讀入數據集并對讀入的數據進行了索引,但是光有這個功能是不夠的,在實際加載數據集的過程中,我們的數據量往往都很大,因此還需要以下幾個功能:
每次讀入一些批次:batch_size
可以對數據進行隨機讀取,打亂數據的順序(shuffling)
可以并行加載數據集(利用多核處理器加快載入數據的效率)
為此,就需要DataLoader類了,它里面常用的參數有:
batch_size:每個batch的大小
shuffle:是否進行shuffle操作
num_works:加載數據的時候使用幾個進程
DataLoader這個類并不需要我們自己設計代碼,只需要利用它讀取我們設計好的Dataset的子類即可
db = Pokemon('pokemon', 224, 'train') lodder = DataLoader(db, batch_size=32, shuffle=True, num_workers=4)完整代碼如下:
import torch import os, glob import random, csv from torch.utils.data import Dataset, DataLoader from torchvision import transforms from PIL import Imageclass Pokemon(Dataset):def __init__(self, root, resize, model):super(Pokemon, self).__init__()self.root = rootself.resize = resizeself.name2label = {} # 將文件夾的名字映射為label(數字)for name in sorted(os.listdir(os.path.join(root))):if not os.path.isdir(os.path.join(root, name)):continueself.name2label[name] = len(self.name2label.keys())# image, labelself.images, self.labels = self.load_csv('images.csv')if model == 'train': # 60%self.images = self.images[:int(0.6*len(self.images))]self.labels = self.labels[:int(0.6*len(self.labels))]elif model == 'val': # 20%self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]else: # 20%self.images = self.images[int(0.8*len(self.images)):]self.labels = self.labels[int(0.8*len(self.labels)):]def load_csv(self, filename):if not os.path.exists(os.path.join(self.root, filename)):images = []for name in self.name2label.keys():images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))random.shuffle(images)with open(os.path.join(self.root, filename), mode='w', newline='') as f:writer = csv.writer(f)for img in images: # pokemon\\bulbasaur\\00000000.pngname = img.split(os.sep)[-2] # bulbasaurlabel = self.name2label[name]# pokemon\\bulbasaur\\00000000.png 0writer.writerow([img, label])print('writen into csv file:', filename)# read csv fileimages, labels = [], []with open(os.path.join(self.root, filename)) as f:reader = csv.reader(f)for row in reader:image, label = rowlabel = int(label)images.append(image)labels.append(label)assert len(images) == len(labels)return images, labelsdef __len__(self):return len(self.images)def __getitem__(self, idx):# idx [0~len(images)]# self.images, self.labels# pokemon\\bulbasaur\\00000000.png 0img, label = self.images[idx], self.labels[idx]tf = transforms.Compose([lambda x:Image.open(x).convert('RGB'), # string path => image datatransforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),transforms.RandomRotation(15),transforms.CenterCrop(self.resize),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])img = tf(img)label = torch.tensor(label)return img, labeldb = Pokemon('pokemon', 224, 'train') lodder = DataLoader(db, batch_size=32, shuffle=True, num_workers=8)Build Model
用PyTorch搭建ResNet其實在我之前的文章(https://wmathor.com/index.php/archives/1389/)已經講過了,這里直接拿來用,修改一下里面的參數就行了
import torch import torch.nn as nn import torch.nn.functional as Fclass ResBlk(nn.Module):def __init__(self, ch_in, ch_out, stride=1):super(ResBlk, self).__init__()self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)self.bn1 = nn.BatchNorm2d(ch_out)self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(ch_out)self.extra = nn.Sequential()if ch_out != ch_in:self.extra = nn.Sequential(nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),nn.BatchNorm2d(ch_out),)def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = self.bn2(self.conv2(out))# short cutout = self.extra(x) + outout = F.relu(out)return outclass ResNet18(nn.Module):def __init__(self, num_class):super(ResNet18, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),nn.BatchNorm2d(16),)# followed 4 blocks# [b, 16, h, w] => [b, 32, h, w]self.blk1 = ResBlk(16, 32, stride=3)# [b, 32, h, w] => [b, 64, h, w]self.blk2 = ResBlk(32, 64, stride=3)# [b, 64, h, w] => [b, 128, h, w]self.blk3 = ResBlk(64, 128, stride=2)# [b, 128, h, w] => [b, 256, h, w]self.blk4 = ResBlk(128, 256, stride=2)self.outlayer = nn.Linear(256*3*3, num_class)def forward(self, x):x = F.relu(self.conv1(x))x = self.blk1(x)x = self.blk2(x)x = self.blk3(x)x = self.blk4(x)x = x.view(x.size(0), -1)x = self.outlayer(x)return xTrain and Test
訓練的時候,嚴格按照Training和Test的邏輯,就是在訓練epoch的過程中,間斷的做一次validation,然后看一下當前的validation accuracy是不是最高的,如果是最高的,就把當前的模型參數保存起來。training完以后,加載最好的模型,再做testing。這就是非常嚴格的訓練邏輯。代碼如下:
batchsz = 32 lr = 1e-3 epochs = 10 device = torch.device('cuda') torch.manual_seed(1234)train_db = Pokemon('pokemon', 224, model='train') val_db = Pokemon('pokemon', 224, model='val') test_db = Pokemon('pokemon', 224, model='test') train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True, num_workers=2) val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2) test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)def evalute(model, loader):correct = 0total = len(loader.dataset)for x,y in loader:with torch.no_grad():logits = model(x)pred = logits.argmax(dim=1)correct += torch.eq(pred, y).sum().float().item()return correct / totaldef main():model = ResNet18(5)optimizer = optim.Adam(model.parameters(), lr=lr)criteon = nn.CrossEntropyLoss()best_acc, best_epoch = 0, 0for epoch in range(epochs):for step, (x, y) in enumerate(train_loader):# x:[b, 3, 224, 224], y:[b]logits = model(x)loss = criteon(logits, y)optimizer.zero_grad()loss.backward()optimizer.step()if epoch % 2 == 0:val_acc = evalute(model, val_loader)if val_acc > best_acc:best_epoch = epochbest_acc = val_acctorch.save(model.state_dict(), 'best.mdl')print('best acc:', best_acc, 'best_epoch', best_epoch)model.load_state_dict(torch.load('best.mdl'))print('loaded from ckt!')test_acc = evalute(model, test_loader)print('test_acc:', test_acc)截至到目前為止,能完整運行的代碼如下:
import torch import os, glob import warnings import random, csv from PIL import Image from torch import optim, nn import torch.nn.functional as F from torchvision import transforms from torch.utils.data import Dataset, DataLoader warnings.filterwarnings('ignore')class Pokemon(Dataset):def __init__(self, root, resize, model):super(Pokemon, self).__init__()self.root = rootself.resize = resizeself.name2label = {} # 將文件夾的名字映射為label(數字)for name in sorted(os.listdir(os.path.join(root))):if not os.path.isdir(os.path.join(root, name)):continueself.name2label[name] = len(self.name2label.keys())# image, labelself.images, self.labels = self.load_csv('images.csv')if model == 'train': # 60%self.images = self.images[:int(0.6*len(self.images))]self.labels = self.labels[:int(0.6*len(self.labels))]elif model == 'val': # 20%self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]else: # 20%self.images = self.images[int(0.8*len(self.images)):]self.labels = self.labels[int(0.8*len(self.labels)):]def load_csv(self, filename):if not os.path.exists(os.path.join(self.root, filename)):images = []for name in self.name2label.keys():images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))random.shuffle(images)with open(os.path.join(self.root, filename), mode='w', newline='') as f:writer = csv.writer(f)for img in images: # pokemon\\bulbasaur\\00000000.pngname = img.split(os.sep)[-2] # bulbasaurlabel = self.name2label[name]# pokemon\\bulbasaur\\00000000.png 0writer.writerow([img, label])print('writen into csv file:', filename)# read csv fileimages, labels = [], []with open(os.path.join(self.root, filename)) as f:reader = csv.reader(f)for row in reader:image, label = rowlabel = int(label)images.append(image)labels.append(label)assert len(images) == len(labels)return images, labelsdef __len__(self):return len(self.images)def __getitem__(self, idx):# idx [0~len(images)]# self.images, self.labels# pokemon\\bulbasaur\\00000000.png 0img, label = self.images[idx], self.labels[idx]tf = transforms.Compose([lambda x:Image.open(x).convert('RGB'), # string path => image datatransforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),transforms.RandomRotation(15),transforms.CenterCrop(self.resize),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])img = tf(img)label = torch.tensor(label)return img, labelclass ResBlk(nn.Module):def __init__(self, ch_in, ch_out, stride=1):super(ResBlk, self).__init__()self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)self.bn1 = nn.BatchNorm2d(ch_out)self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(ch_out)self.extra = nn.Sequential()if ch_out != ch_in:self.extra = nn.Sequential(nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),nn.BatchNorm2d(ch_out),)def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = self.bn2(self.conv2(out))# short cutout = self.extra(x) + outout = F.relu(out)return outclass ResNet18(nn.Module):def __init__(self, num_class):super(ResNet18, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),nn.BatchNorm2d(16),)# followed 4 blocks# [b, 16, h, w] => [b, 32, h, w]self.blk1 = ResBlk(16, 32, stride=3)# [b, 32, h, w] => [b, 64, h, w]self.blk2 = ResBlk(32, 64, stride=3)# [b, 64, h, w] => [b, 128, h, w]self.blk3 = ResBlk(64, 128, stride=2)# [b, 128, h, w] => [b, 256, h, w]self.blk4 = ResBlk(128, 256, stride=2)self.outlayer = nn.Linear(256*3*3, num_class)def forward(self, x):x = F.relu(self.conv1(x))x = self.blk1(x)x = self.blk2(x)x = self.blk3(x)x = self.blk4(x)x = x.view(x.size(0), -1)x = self.outlayer(x)return xbatchsz = 32 lr = 1e-3 epochs = 10 device = torch.device('cuda') torch.manual_seed(1234)train_db = Pokemon('pokemon', 224, model='train') val_db = Pokemon('pokemon', 224, model='val') test_db = Pokemon('pokemon', 224, model='test') train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True, num_workers=2) val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2) test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)def evalute(model, loader):correct = 0total = len(loader.dataset)for x,y in loader:with torch.no_grad():logits = model(x)pred = logits.argmax(dim=1)correct += torch.eq(pred, y).sum().float().item()return correct / totaldef main():model = ResNet18(5)optimizer = optim.Adam(model.parameters(), lr=lr)criteon = nn.CrossEntropyLoss()best_acc, best_epoch = 0, 0for epoch in range(epochs):for step, (x, y) in enumerate(train_loader):# x:[b, 3, 224, 224], y:[b]logits = model(x)loss = criteon(logits, y)optimizer.zero_grad()loss.backward()optimizer.step()if epoch % 2 == 0:val_acc = evalute(model, val_loader)if val_acc > best_acc:best_epoch = epochbest_acc = val_acctorch.save(model.state_dict(), 'best.mdl')print('best acc:', best_acc, 'best_epoch', best_epoch)model.load_state_dict(torch.load('best.mdl'))print('loaded from ckt!')test_acc = evalute(model, test_loader)print('test_acc:', test_acc)if __name__ == '__main__':main()Transfer Learning
運行上面的代碼,基本上最終test accuracy可以達到0.88左右。如果想要提升的話,就需要使用更多工程上的tricks或者調參
當然還有一種方法,就是遷移學習,我們先看下面這張圖,這張圖展示的問題在于,當數據很少的情況下(第一張圖),模型訓練的結果可能會有很多情況(第二張圖),當然最終輸出就一個結果。然而這個結果可能test accuracy并不高。就比方說我們的pokemon圖片,只有1000多張,算是一個比較少的數據集了,但是由于pokemon和ImageNet都是圖片,它們可能存在某些共性。那我們能不能用ImageNet的一些train好的模型,拿來幫助我們解決一下特定的圖片分類任務,這就是Transfer Learning,也就是在A任務上train好一個分類器,再transfer到B上去
我個人理解Transfer Learning的作用是這樣的,我們都知道神經網絡初始化參數非常重要,有時候初始化不好,可能就會導致最終效果非常差。現在我們用一個在A任務上已經訓練好了的網絡,相當于幫你做了一個很好的初始化,你在這個網絡的基礎上,去做B任務,如果這兩個任務比較接近的話,夸張一點說,這個網絡的訓練可能就只需要微調一下,就能在B任務上顯示出非常好的效果
下圖展示的是一個真實的Transfer Learning的過程,左邊是已經training好的網絡,我們利用這個網絡的公有部分,吸取它的common knowledge, 然后把最后一層去掉,換成我們需要的
先上核心代碼
import torch.nn as nn from torchvision.models import resnet18class Flatten(nn.Module):def __init__(self):super(Flatten, self).__init__()def forward(self, x):shape = torch.prod(torch.tensor(x.shape[1:])).item()return x.view(-1, shape) trained_model = resnet18(pretrained=True) model = nn.Sequential(*list(trained_model.children())[:-1],# [b, 512, 1, 1]Flatten(), # [b, 512, 1, 1] => [b, 512]nn.Linear(512, 5) # [b, 512] => [b, 5])PyTorch中有已經訓練好的各種規格的resnet,第一次使用需要下載。我們不要resnet18的最后一層,所以要用list(trained_model.children())[:-1]把除了最后一層以外的所有層都取出來,保存在list中,然后用*將其list展開,之后接一個我們自定義的Flatten層,作用是將output打平,打平以后才能送到Linear層去
上面幾行代碼就實現了Transfer Learning,而且不需要我們自己實現resnet,完整代碼如下
import torch import os, glob import warnings import random, csv from PIL import Image from torch import optim, nn import torch.nn.functional as F from torchvision import transforms from torchvision.models import resnet18 from torch.utils.data import Dataset, DataLoader warnings.filterwarnings('ignore') from matplotlib import pyplot as pltclass Pokemon(Dataset):def __init__(self, root, resize, model):super(Pokemon, self).__init__()self.root = rootself.resize = resizeself.name2label = {} # 將文件夾的名字映射為label(數字)for name in sorted(os.listdir(os.path.join(root))):if not os.path.isdir(os.path.join(root, name)):continueself.name2label[name] = len(self.name2label.keys())# image, labelself.images, self.labels = self.load_csv('images.csv')if model == 'train': # 60%self.images = self.images[:int(0.6*len(self.images))]self.labels = self.labels[:int(0.6*len(self.labels))]elif model == 'val': # 20%self.images = self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]self.labels = self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]else: # 20%self.images = self.images[int(0.8*len(self.images)):]self.labels = self.labels[int(0.8*len(self.labels)):]def load_csv(self, filename):if not os.path.exists(os.path.join(self.root, filename)):images = []for name in self.name2label.keys():images += glob.glob(os.path.join(self.root, name, '*.png'))images += glob.glob(os.path.join(self.root, name, '*.jpg'))images += glob.glob(os.path.join(self.root, name, '*.jpeg'))random.shuffle(images)with open(os.path.join(self.root, filename), mode='w', newline='') as f:writer = csv.writer(f)for img in images: # pokemon\\bulbasaur\\00000000.pngname = img.split(os.sep)[-2] # bulbasaurlabel = self.name2label[name]# pokemon\\bulbasaur\\00000000.png 0writer.writerow([img, label])print('writen into csv file:', filename)# read csv fileimages, labels = [], []with open(os.path.join(self.root, filename)) as f:reader = csv.reader(f)for row in reader:image, label = rowlabel = int(label)images.append(image)labels.append(label)assert len(images) == len(labels)return images, labelsdef __len__(self):return len(self.images)def __getitem__(self, idx):# idx [0~len(images)]# self.images, self.labels# pokemon\\bulbasaur\\00000000.png 0img, label = self.images[idx], self.labels[idx]tf = transforms.Compose([lambda x:Image.open(x).convert('RGB'), # string path => image datatransforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),transforms.RandomRotation(15),transforms.CenterCrop(self.resize),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])img = tf(img)label = torch.tensor(label)return img, labelclass Flatten(nn.Module):def __init__(self):super(Flatten, self).__init__()def forward(self, x):shape = torch.prod(torch.tensor(x.shape[1:])).item()return x.view(-1, shape) batchsz = 32 lr = 1e-3 epochs = 10 device = torch.device('cuda') torch.manual_seed(1234)train_db = Pokemon('pokemon', 224, model='train') val_db = Pokemon('pokemon', 224, model='val') test_db = Pokemon('pokemon', 224, model='test') train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True, num_workers=2) val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2) test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)def evalute(model, loader):correct = 0total = len(loader.dataset)for x,y in loader:with torch.no_grad():logits = model(x)pred = logits.argmax(dim=1)correct += torch.eq(pred, y).sum().float().item()return correct / totaldef main():trained_model = resnet18(pretrained=True)model = nn.Sequential(*list(trained_model.children())[:-1],# [b, 512, 1, 1]Flatten(), # [b, 512, 1, 1] => [b, 512]nn.Linear(512, 5))optimizer = optim.Adam(model.parameters(), lr=lr)criteon = nn.CrossEntropyLoss()best_acc, best_epoch = 0, 0for epoch in range(epochs):for step, (x, y) in enumerate(train_loader):# x:[b, 3, 224, 224], y:[b]logits = model(x)loss = criteon(logits, y)optimizer.zero_grad()loss.backward()optimizer.step()if epoch % 2 == 0:val_acc = evalute(model, val_loader)if val_acc > best_acc:best_epoch = epochbest_acc = val_acctorch.save(model.state_dict(), 'best.mdl')print('best acc:', best_acc, 'best_epoch', best_epoch)model.load_state_dict(torch.load('best.mdl'))print('loaded from ckt!')test_acc = evalute(model, test_loader)print('test_acc:', test_acc)if __name__ == '__main__':main()最終test accuracy在0.94左右,比我們自己從0開始訓練效果好了很多
往期精彩回顧適合初學者入門人工智能的路線及資料下載機器學習在線手冊深度學習在線手冊AI基礎下載(pdf更新到25集)備注:加入本站微信群或者qq群,請回復“加群”獲取一折本站知識星球優惠券,請回復“知識星球”喜歡文章,點個在看
總結
以上是生活随笔為你收集整理的AI入门:Transfer Learning(迁移学习)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: NeurIPS 2019:计算机视觉论文
- 下一篇: 图系列|7篇动态时空图网络学习必读的顶会