贝塞尔曲线 java_贝塞尔曲线理论及实现——Java篇
貝塞爾曲線貝塞爾曲線(The?Bézier?Curves),是一種在計(jì)算機(jī)圖形學(xué)中相當(dāng)重要的參數(shù)曲線(2D,3D的稱(chēng)為曲面)。貝塞爾曲線于1962年,由法國(guó)工程師皮埃爾·貝塞爾(Pierre?Bézier)所發(fā)表,他運(yùn)用貝塞爾曲線來(lái)為汽車(chē)的主體進(jìn)行設(shè)計(jì)。
線性曲線給定點(diǎn)P0、P1,線性貝塞爾曲線只是一條兩點(diǎn)之間的直線。這條線由下式給出:
當(dāng)參數(shù)t變化時(shí),其過(guò)程如下:
線性貝塞爾曲線函數(shù)中的t會(huì)經(jīng)過(guò)由P0至P1的B(t)所描述的曲線。例如當(dāng)t=0.25時(shí),B(t)即一條由點(diǎn)P0至P1路徑的四分之一處。就像由0至1的連續(xù)t,B(t)描述一條由P0至P1的直線。二次曲線二次方貝塞爾曲線的路徑由給定點(diǎn)P0、P1、P2的函數(shù)B(t)追蹤:
為建構(gòu)二次貝塞爾曲線,可以中介點(diǎn)Q0和Q1作為由0至1的t:*?由P0至P1的連續(xù)點(diǎn)Q0,描述一條線性貝塞爾曲線。*?由P1至P2的連續(xù)點(diǎn)Q1,描述一條線性貝塞爾曲線。*?由Q0至Q1的連續(xù)點(diǎn)B(t),描述一條二次貝塞爾曲線。二次曲線看起來(lái)就是這樣的:
三次曲線為建構(gòu)高階曲線,便需要相應(yīng)更多的中介點(diǎn)。對(duì)于三次曲線,可由線性貝塞爾曲線描述的中介點(diǎn)Q0、Q1、Q2,和由二次曲線描述的點(diǎn)R0、R1所建構(gòu)。P0、P1、P2、P3四個(gè)點(diǎn)在平面或在三維空間中定義了三次方貝塞爾曲線。曲線起始于P0走向P1,并從P2的方向來(lái)到P3。一般不會(huì)經(jīng)過(guò)P1或P2;這兩個(gè)點(diǎn)只是在那里提供方向資訊。P0和P1之間的間距,決定了曲線在轉(zhuǎn)而趨進(jìn)P3之前,走向P2方向的“長(zhǎng)度有多長(zhǎng)”。曲線的參數(shù)形式為:
看起來(lái)就是這樣的:
高階曲線更高階的貝塞爾曲線,可以用以下公式表示:用
表示由點(diǎn)P0、P1、…、Pn所決定的貝塞爾曲線。則有:
更多的關(guān)于貝塞爾曲線的內(nèi)容,你可以去查閱各種數(shù)學(xué)書(shū)。
代碼實(shí)現(xiàn)其實(shí)也非常簡(jiǎn)單,把公式套過(guò)來(lái)直接用起來(lái)就OK了。這里我以3次曲線為例
for (double k = t; k <= 1 + t; k += t) {
x = (1 - k) * (1 - k) * (1 - k) * ps[0].getX() + 3 * k * (1 - k) * (1 - k) * ps[1].getX()
+ 3 * k * k * (1 - k) * ps[2].getX() + k * k * k * ps[3].getX();
y = (1 - k) * (1 - k) * (1 - k) * ps[0].getY() + 3 * k * (1 - k) * (1 - k) * ps[1].getY()
+ 3 * k * k * (1 - k) * ps[2].getY() + k * k * k * ps[3].getY();
g2.drawOval((int) x, (int) y, 1, 1);
}
以上是核心算法,下面是完整代碼:
package com.opentcs.customization;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.event.MouseMotionListener;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Point2D;
import javax.swing.JFrame;
import javax.swing.JPanel;
public class BezierDemo extends JPanel implements MouseListener, MouseMotionListener {
private static final long serialVersionUID = 1L;
private Point2D[] ps;
private Ellipse2D.Double[] ellipse;
private static final double SIDELENGTH = 8;
private int numPoints;
private double t = 0.002;
public BezierDemo() {
numPoints = 0;
ps = new Point2D[4];
ellipse = new Ellipse2D.Double[4];
this.addMouseListener(this);
this.addMouseMotionListener(this);
}
@Override
protected void paintComponent(Graphics g) {
// TODO Auto-generated method stub
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2.setColor(Color.BLUE);
for (int i = 0; i < numPoints; i++) { // 繪制圓點(diǎn) if (i > 0 && i < (numPoints - 1)) { g2.fill(ellipse[i]); } else { g2.draw(ellipse[i]); } // 繪制點(diǎn)之間的連接線 if (numPoints > 1 && i < (numPoints - 1))
g2.drawLine((int) ps[i].getX(), (int) ps[i].getY(), (int) ps[i + 1].getX(), (int) ps[i + 1].getY());
}
if (numPoints == 4) {
double x, y;
g2.setColor(Color.RED);
for (double k = t; k <= 1 + t; k += t) {
x = (1 - k) * (1 - k) * (1 - k) * ps[0].getX() + 3 * k * (1 - k) * (1 - k) * ps[1].getX()
+ 3 * k * k * (1 - k) * ps[2].getX() + k * k * k * ps[3].getX();
y = (1 - k) * (1 - k) * (1 - k) * ps[0].getY() + 3 * k * (1 - k) * (1 - k) * ps[1].getY()
+ 3 * k * k * (1 - k) * ps[2].getY() + k * k * k * ps[3].getY();
g2.drawOval((int) x, (int) y, 1, 1);
}
}
}
@Override
public Dimension getPreferredSize() {
// TODO Auto-generated method stub
return new Dimension(600, 600);
}
public static void main(String[] agrs) {
JFrame f = new JFrame();
BezierDemo t2 = new BezierDemo();
f.add(t2);
f.pack();
f.setVisible(true);
f.setLocationRelativeTo(null);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
@Override
public void mouseClicked(MouseEvent e) {
// TODO Auto-generated method stub
if (numPoints < 4) {
double x = e.getX();
double y = e.getY();
ps[numPoints] = new Point2D.Double(x, y);
Ellipse2D.Double current = new Ellipse2D.Double(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH,
SIDELENGTH);
ellipse[numPoints] = current;
numPoints++;
repaint();
}
}
private int flag = -1;
@Override
public void mousePressed(MouseEvent e) {
// TODO Auto-generated method stub
if (!find((Point2D) e.getPoint()))
flag = -1;
}
private boolean find(Point2D p) {
for (int i = 0; i < numPoints; i++) {
if (ellipse[i].contains(p)) {
flag = i;
return true;
}
}
return false;
}
@Override
public void mouseReleased(MouseEvent e) {
// TODO Auto-generated method stub
}
@Override
public void mouseEntered(MouseEvent e) {
// TODO Auto-generated method stub
}
@Override
public void mouseExited(MouseEvent e) {
// TODO Auto-generated method stub
}
@Override
public void mouseDragged(MouseEvent e) {
// TODO Auto-generated method stub
if (flag < 5 && flag >= 0) {
double x = e.getX();
double y = e.getY();
ps[flag] = new Point2D.Double(x, y);
Ellipse2D.Double current = new Ellipse2D.Double(x - SIDELENGTH / 2, y - SIDELENGTH / 2, SIDELENGTH,
SIDELENGTH);
ellipse[flag] = current;
repaint();
}
}
@Override
public void mouseMoved(MouseEvent e) {
// TODO Auto-generated method stub
}
}
效果圖:
總結(jié)
以上是生活随笔為你收集整理的贝塞尔曲线 java_贝塞尔曲线理论及实现——Java篇的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: html和css如何制作小球,[网页设计
- 下一篇: js datagrid新增一行_Djan