Hadoop+Hbase分布式集群架构“完全篇”
本文收錄在Linux運(yùn)維企業(yè)架構(gòu)實(shí)戰(zhàn)系列
前言:本篇博客是博主踩過無數(shù)坑,反復(fù)查閱資料,一步步搭建,操作完成后整理的個(gè)人心得,分享給大家~~~
1、認(rèn)識(shí)Hadoop和Hbase
1.1 hadoop簡(jiǎn)單介紹
Hadoop是一個(gè)使用java編寫的Apache開放源代碼框架,它允許使用簡(jiǎn)單的編程模型跨大型計(jì)算機(jī)的大型數(shù)據(jù)集進(jìn)行分布式處理。Hadoop框架工作的應(yīng)用程序可以在跨計(jì)算機(jī)群集提供分布式存儲(chǔ)和計(jì)算的環(huán)境中工作。Hadoop旨在從單一服務(wù)器擴(kuò)展到數(shù)千臺(tái)機(jī)器,每臺(tái)機(jī)器都提供本地計(jì)算和存儲(chǔ)。
?
1.2 Hadoop架構(gòu)
Hadoop框架包括以下四個(gè)模塊:
- ?Hadoop Common:這些是其他Hadoop模塊所需的Java庫(kù)和實(shí)用程序。這些庫(kù)提供文件系統(tǒng)和操作系統(tǒng)級(jí)抽象,并包含啟動(dòng)Hadoop所需的必要Java文件和腳本。
- ?Hadoop YARN:這是作業(yè)調(diào)度和集群資源管理的框架。
- ?Hadoop分布式文件系統(tǒng)(HDFS):提供對(duì)應(yīng)用程序數(shù)據(jù)的高吞吐量訪問的分布式文件系統(tǒng)。
- ?Hadoop MapReduce: 這是基于YARN的大型數(shù)據(jù)集并行處理系統(tǒng)。
我們可以使用下圖來描述Hadoop框架中可用的這四個(gè)組件。
自2012年以來,術(shù)語(yǔ)“Hadoop”通常不僅指向上述基本模塊,而且還指向可以安裝在Hadoop之上或之外的其他軟件包,例如Apache Pig,Apache Hive,Apache HBase,Apache火花等
?
1.3 Hadoop如何工作?
(1)階段1
用戶/應(yīng)用程序可以通過指定以下項(xiàng)目向Hadoop(hadoop作業(yè)客戶端)提交所需的進(jìn)程:
- ?分布式文件系統(tǒng)中輸入和輸出文件的位置。
- ?java類以jar文件的形式包含了map和reduce功能的實(shí)現(xiàn)。
- ?通過設(shè)置作業(yè)特定的不同參數(shù)來進(jìn)行作業(yè)配置。
(2)階段2
然后,Hadoop作業(yè)客戶端將作業(yè)(jar /可執(zhí)行文件等)和配置提交給JobTracker,JobTracker負(fù)責(zé)將軟件/配置分發(fā)到從站,調(diào)度任務(wù)和監(jiān)視它們,向作業(yè)客戶端提供狀態(tài)和診斷信息。
(3)階段3
不同節(jié)點(diǎn)上的TaskTrackers根據(jù)MapReduce實(shí)現(xiàn)執(zhí)行任務(wù),并將reduce函數(shù)的輸出存儲(chǔ)到文件系統(tǒng)的輸出文件中。
?
1.4 Hadoop的優(yōu)點(diǎn)
- ?Hadoop框架允許用戶快速編寫和測(cè)試分布式系統(tǒng)。它是高效的,它自動(dòng)分配數(shù)據(jù)并在機(jī)器上工作,反過來利用CPU核心的底層并行性。
- ?Hadoop不依賴硬件提供容錯(cuò)和高可用性(FTHA),而是Hadoop庫(kù)本身被設(shè)計(jì)為檢測(cè)和處理應(yīng)用層的故障。
- ?服務(wù)器可以動(dòng)態(tài)添加或從集群中刪除,Hadoop繼續(xù)運(yùn)行而不會(huì)中斷。
- ?Hadoop的另一大優(yōu)點(diǎn)是,除了是開放源碼,它是所有平臺(tái)兼容的,因?yàn)樗腔?/span>Java的。
?
1.5 HBase介紹
Hbase全稱為Hadoop?Database,即hbase是hadoop的數(shù)據(jù)庫(kù),是一個(gè)分布式的存儲(chǔ)系統(tǒng)。Hbase利用Hadoop的HDFS作為其文件存儲(chǔ)系統(tǒng),利用Hadoop的MapReduce來處理Hbase中的海量數(shù)據(jù)。利用zookeeper作為其協(xié)調(diào)工具。?
?
1.6 HBase體系架構(gòu)
Client
- ?包含訪問HBase的接口并維護(hù)cache來加快對(duì)HBase的訪問
Zookeeper
- ?保證任何時(shí)候,集群中只有一個(gè)master
- ?存貯所有Region的尋址入口。
- ?實(shí)時(shí)監(jiān)控Region server的上線和下線信息。并實(shí)時(shí)通知Master
- ?存儲(chǔ)HBase的schema和table元數(shù)據(jù)
Master
- ?為Region server分配region
- ?負(fù)責(zé)Region server的負(fù)載均衡
- ?發(fā)現(xiàn)失效的Region server并重新分配其上的region
- ?管理用戶對(duì)table的增刪改操作
RegionServer
- ?Region server維護(hù)region,處理對(duì)這些region的IO請(qǐng)求
- ?Region server負(fù)責(zé)切分在運(yùn)行過程中變得過大的region
HLog(WAL log)
- ?HLog文件就是一個(gè)普通的Hadoop Sequence File,Sequence File 的Key是 HLogKey對(duì)象,HLogKey中記錄了寫入數(shù)據(jù)的歸屬信息,除了table和 region名字外,同時(shí)還包括sequence number和timestamp,timestamp是” 寫入時(shí)間”,sequence number的起始值為0,或者是最近一次存入文件系 統(tǒng)中sequence number。
- ?HLog SequeceFile的Value是HBase的KeyValue對(duì)象,即對(duì)應(yīng)HFile中的 KeyValue
Region
- ?HBase自動(dòng)把表水平劃分成多個(gè)區(qū)域(region),每個(gè)region會(huì)保存一個(gè)表 里面某段連續(xù)的數(shù)據(jù);每個(gè)表一開始只有一個(gè)region,隨著數(shù)據(jù)不斷插 入表,region不斷增大,當(dāng)增大到一個(gè)閥值的時(shí)候,region就會(huì)等分會(huì) 兩個(gè)新的region(裂變);
- ?當(dāng)table中的行不斷增多,就會(huì)有越來越多的region。這樣一張完整的表 被保存在多個(gè)Regionserver上。
Memstore 與 storefile
- ?一個(gè)region由多個(gè)store組成,一個(gè)store對(duì)應(yīng)一個(gè)CF(列族)
- ?store包括位于內(nèi)存中的memstore和位于磁盤的storefile寫操作先寫入 memstore,當(dāng)memstore中的數(shù)據(jù)達(dá)到某個(gè)閾值,hregionserver會(huì)啟動(dòng) flashcache進(jìn)程寫入storefile,每次寫入形成單獨(dú)的一個(gè)storefile
- ?當(dāng)storefile文件的數(shù)量增長(zhǎng)到一定閾值后,系統(tǒng)會(huì)進(jìn)行合并(minor、 major compaction),在合并過程中會(huì)進(jìn)行版本合并和刪除工作 (majar),形成更大的storefile。
- ?當(dāng)一個(gè)region所有storefile的大小和超過一定閾值后,會(huì)把當(dāng)前的region 分割為兩個(gè),并由hmaster分配到相應(yīng)的regionserver服務(wù)器,實(shí)現(xiàn)負(fù)載均衡。
- ?客戶端檢索數(shù)據(jù),先在memstore找,找不到再找storefile
- ?HRegion是HBase中分布式存儲(chǔ)和負(fù)載均衡的最小單元。最小單元就表 示不同的HRegion可以分布在不同的HRegion server上。
- ?HRegion由一個(gè)或者多個(gè)Store組成,每個(gè)store保存一個(gè)columns family。
- ?每個(gè)Strore又由一個(gè)memStore和0至多個(gè)StoreFile組成。
?
2、安裝搭建hadoop
2.1 配置說明
本次集群搭建共三臺(tái)機(jī)器,具體說明下:
| 主機(jī)名 | IP | 說明 |
| hadoop01 | 192.168.10.101 | DataNode、NodeManager、ResourceManager、NameNode |
| hadoop02 | 192.168.10.102 | DataNode、NodeManager、SecondaryNameNode |
| hadoop03 | 192.168.10.106 | DataNode、NodeManager |
?
2.2 安裝前準(zhǔn)備
2.2.1 機(jī)器配置說明
$ cat /etc/redhat-release CentOS Linux release 7.3.1611 (Core) $ uname -r 3.10.0-514.el7.x86_64注:本集群內(nèi)所有進(jìn)程均由clsn用戶啟動(dòng);要在集群所有服務(wù)器都進(jìn)行操作。
?
2.2.2 關(guān)閉selinux、防火墻
[along@hadoop01 ~]$ sestatus SELinux status: disabled [root@hadoop01 ~]$ iptables -F [along@hadoop01 ~]$ systemctl status firewalld.service ● firewalld.service - firewalld - dynamic firewall daemonLoaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)Active: inactive (dead)Docs: man:firewalld(1)
2.2.3 準(zhǔn)備用戶
$ id along uid=1000(along) gid=1000(along) groups=1000(along)
2.2.4 修改hosts文件,域名解析
$ cat /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6192.168.10.101 hadoop01 192.168.10.102 hadoop02 192.168.10.103 hadoop03
2.2.5 同步時(shí)間
$ yum -y install ntpdate $ sudo ntpdate cn.pool.ntp.org
2.2.6 ssh互信配置
(1)生成密鑰對(duì),一直回車即可
[along@hadoop01 ~]$ ssh-keygen(2)保證每臺(tái)服務(wù)器各自都有對(duì)方的公鑰
---along用戶 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub 127.0.0.1 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop01 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop02 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop03 ---root用戶 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub 127.0.0.1 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop01 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop02 [along@hadoop01 ~]$ ssh-copy-id -i ~/.ssh/id_rsa.pub hadoop03注:要在集群所有服務(wù)器都進(jìn)行操作
(3)驗(yàn)證無秘鑰認(rèn)證登錄
[along@hadoop02 ~]$ ssh along@hadoop01 [along@hadoop02 ~]$ ssh along@hadoop02 [along@hadoop02 ~]$ ssh along@hadoop03
2.3 配置jdk
在三臺(tái)機(jī)器上都需要操作
[root@hadoop01 ~]# tar -xvf jdk-8u201-linux-x64.tar.gz -C /usr/local [root@hadoop01 ~]# chown along.along -R /usr/local/jdk1.8.0_201/ [root@hadoop01 ~]# ln -s /usr/local/jdk1.8.0_201/ /usr/local/jdk [root@hadoop01 ~]# cat /etc/profile.d/jdk.sh export JAVA_HOME=/usr/local/jdk PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH [root@hadoop01 ~]# source /etc/profile.d/jdk.sh [along@hadoop01 ~]$ java -version java version "1.8.0_201" Java(TM) SE Runtime Environment (build 1.8.0_201-b09) Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode)
2.4 安裝hadoop
[root@hadoop01 ~]# wget https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-3.2.0/hadoop-3.2.0.tar.gz [root@hadoop01 ~]# tar -xvf hadoop-3.2.0.tar.gz -C /usr/local/ [root@hadoop01 ~]# chown along.along -R /usr/local/hadoop-3.2.0/ [root@hadoop01 ~]# ln -s /usr/local/hadoop-3.2.0/ /usr/local/hadoop
3、配置啟動(dòng)hadoop
3.1 ?hadoop-env.sh 配置hadoop環(huán)境變量
[along@hadoop01 ~]$ cd /usr/local/hadoop/etc/hadoop/ [along@hadoop01 hadoop]$ vim hadoop-env.sh export JAVA_HOME=/usr/local/jdk export HADOOP_HOME=/usr/local/hadoop export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
3.2 core-site.xml 配置HDFS
[along@hadoop01 hadoop]$ vim core-site.xml <configuration><!-- 指定HDFS默認(rèn)(namenode)的通信地址 --><property><name>fs.defaultFS</name><value>hdfs://hadoop01:9000</value></property><!-- 指定hadoop運(yùn)行時(shí)產(chǎn)生文件的存儲(chǔ)路徑 --><property><name>hadoop.tmp.dir</name><value>/data/hadoop/tmp</value></property> </configuration> [root@hadoop01 ~]# mkdir /data/hadoop
3.3 hdfs-site.xml 配置namenode
[along@hadoop01 hadoop]$ vim hdfs-site.xml <configuration><!-- 設(shè)置namenode的http通訊地址 --><property><name>dfs.namenode.http-address</name><value>hadoop01:50070</value></property><!-- 設(shè)置secondarynamenode的http通訊地址 --><property><name>dfs.namenode.secondary.http-address</name><value>hadoop02:50090</value></property><!-- 設(shè)置namenode存放的路徑 --><property><name>dfs.namenode.name.dir</name><value>/data/hadoop/name</value></property><!-- 設(shè)置hdfs副本數(shù)量 --><property><name>dfs.replication</name><value>2</value></property><!-- 設(shè)置datanode存放的路徑 --><property><name>dfs.datanode.data.dir</name><value>/data/hadoop/datanode</value></property><property><name>dfs.permissions</name><value>false</value></property> </configuration> [root@hadoop01 ~]# mkdir /data/hadoop/name -p [root@hadoop01 ~]# mkdir /data/hadoop/datanode -p
3.4 mapred-site.xml 配置框架
[along@hadoop01 hadoop]$ vim mapred-site.xml <configuration><!-- 通知框架MR使用YARN --><property><name>mapreduce.framework.name</name><value>yarn</value></property><property><name>mapreduce.application.classpath</name><value>/usr/local/hadoop/etc/hadoop,/usr/local/hadoop/share/hadoop/common/*,/usr/local/hadoop/share/hadoop/common/lib/*,/usr/local/hadoop/share/hadoop/hdfs/*,/usr/local/hadoop/share/hadoop/hdfs/lib/*,/usr/local/hadoop/share/hadoop/mapreduce/*,/usr/local/hadoop/share/hadoop/mapreduce/lib/*,/usr/local/hadoop/share/hadoop/yarn/*,/usr/local/hadoop/share/hadoop/yarn/lib/*</value></property> </configuration>
3.5 yarn-site.xml 配置resourcemanager
[along@hadoop01 hadoop]$ vim yarn-site.xml <configuration><property><name>yarn.resourcemanager.hostname</name><value>hadoop01</value></property><property><description>The http address of the RM web application.</description><name>yarn.resourcemanager.webapp.address</name><value>${yarn.resourcemanager.hostname}:8088</value></property><property><description>The address of the applications manager interface in the RM.</description><name>yarn.resourcemanager.address</name><value>${yarn.resourcemanager.hostname}:8032</value></property><property><description>The address of the scheduler interface.</description><name>yarn.resourcemanager.scheduler.address</name><value>${yarn.resourcemanager.hostname}:8030</value></property><property><name>yarn.resourcemanager.resource-tracker.address</name><value>${yarn.resourcemanager.hostname}:8031</value></property><property><description>The address of the RM admin interface.</description><name>yarn.resourcemanager.admin.address</name><value>${yarn.resourcemanager.hostname}:8033</value></property> </configuration>
3.6 配置masters & slaves
[along@hadoop01 hadoop]$ echo 'hadoop02' >> /usr/local/hadoop/etc/hadoop/masters [along@hadoop01 hadoop]$ echo 'hadoop03 hadoop01' >> /usr/local/hadoop/etc/hadoop/slaves
3.7 啟動(dòng)前準(zhǔn)備
3.7.1 準(zhǔn)備啟動(dòng)腳本
啟動(dòng)腳本文件全部位于 /usr/local/hadoop/sbin 文件夾下:
(1)修改 start-dfs.sh stop-dfs.sh 文件添加:
[along@hadoop01 ~]$ vim /usr/local/hadoop/sbin/start-dfs.sh [along@hadoop01 ~]$ vim /usr/local/hadoop/sbin/stop-dfs.sh HDFS_DATANODE_USER=along HADOOP_SECURE_DN_USER=hdfs HDFS_NAMENODE_USER=along HDFS_SECONDARYNAMENODE_USER=along(2)修改start-yarn.sh 和 stop-yarn.sh文件添加:
[along@hadoop01 ~]$ vim /usr/local/hadoop/sbin/start-yarn.sh [along@hadoop01 ~]$ vim /usr/local/hadoop/sbin/stop-yarn.sh YARN_RESOURCEMANAGER_USER=along HADOOP_SECURE_DN_USER=yarn YARN_NODEMANAGER_USER=along
3.7.2 授權(quán)
[root@hadoop01 ~]# chown -R along.along /usr/local/hadoop-3.2.0/ [root@hadoop01 ~]# chown -R along.along /data/hadoop/
3.7.3 配置hadoop命令環(huán)境變量
[root@hadoop01 ~]# vim /etc/profile.d/hadoop.sh [root@hadoop01 ~]# cat /etc/profile.d/hadoop.sh export HADOOP_HOME=/usr/local/hadoop PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
3.7.4 集群初始化
[root@hadoop01 ~]# vim /data/hadoop/rsync.sh #在集群內(nèi)所有機(jī)器上都創(chuàng)建所需要的目錄 for i in hadoop02 hadoop03do sudo rsync -a /data/hadoop $i:/data/ done #復(fù)制hadoop配置到其他機(jī)器 for i in hadoop02 hadoop03do sudo rsync -a /usr/local/hadoop-3.2.0/etc/hadoop $i:/usr/local/hadoop-3.2.0/etc/ done [root@hadoop01 ~]# /data/hadoop/rsync.sh
3.8 啟動(dòng)hadoop集群
3.8.1 第一次啟動(dòng)前需要格式化,集群所有服務(wù)器都需要;
[along@hadoop01 ~]$ hdfs namenode -format ... ... /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at hadoop01/192.168.10.101 ************************************************************/ [along@hadoop02 ~]$ hdfs namenode -format /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at hadoop02/192.168.10.102 ************************************************************/ [along@hadoop03 ~]$ hdfs namenode -format /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at hadoop03/192.168.10.103 ************************************************************/
3.8.2 啟動(dòng)并驗(yàn)證集群
(1)啟動(dòng)namenode、datanode
[along@hadoop01 ~]$ start-dfs.sh [along@hadoop02 ~]$ start-dfs.sh [along@hadoop03 ~]$ start-dfs.sh [along@hadoop01 ~]$ jps 4480 DataNode 4727 Jps 4367 NameNode [along@hadoop02 ~]$ jps 4082 Jps 3958 SecondaryNameNode 3789 DataNode [along@hadoop03 ~]$ jps 2689 Jps 2475 DataNode(2)啟動(dòng)YARN
[along@hadoop01 ~]$ start-yarn.sh [along@hadoop02 ~]$ start-yarn.sh [along@hadoop03 ~]$ start-yarn.sh [along@hadoop01 ~]$ jps 4480 DataNode 4950 NodeManager 5447 NameNode 5561 Jps 4842 ResourceManager [along@hadoop02 ~]$ jps 3958 SecondaryNameNode 4503 Jps 3789 DataNode 4367 NodeManager [along@hadoop03 ~]$ jps 12353 Jps 12226 NodeManager 2475 DataNode
3.9 集群?jiǎn)?dòng)成功
(1)網(wǎng)頁(yè)訪問:http://hadoop01:8088
該頁(yè)面為ResourceManager 管理界面,在上面可以看到集群中的三臺(tái)Active Nodes。
(2)網(wǎng)頁(yè)訪問:http://hadoop01:50070/dfshealth.html#tab-datanode
該頁(yè)面為NameNode管理頁(yè)面
到此hadoop集群已經(jīng)搭建完畢!!!
?
4、安裝配置Hbase
4.1 安裝Hbase
[root@hadoop01 ~]# wget https://mirrors.tuna.tsinghua.edu.cn/apache/hbase/1.4.9/hbase-1.4.9-bin.tar.gz [root@hadoop01 ~]# tar -xvf hbase-1.4.9-bin.tar.gz -C /usr/local/ [root@hadoop01 ~]# chown -R along.along /usr/local/hbase-1.4.9/ [root@hadoop01 ~]# ln -s /usr/local/hbase-1.4.9/ /usr/local/hbase注:當(dāng)前時(shí)間2018.03.08,hbase-2.1版本有問題;也可能是我配置的問題,hbase會(huì)啟動(dòng)失敗;所以,我降級(jí)到了hbase-1.4.9版本。
?
4.2 配置Hbase
4.2.1 hbase-env.sh 配置hbase環(huán)境變量
[root@hadoop01 ~]# cd /usr/local/hbase/conf/ [root@hadoop01 conf]# vim hbase-env.sh export JAVA_HOME=/usr/local/jdk export HBASE_CLASSPATH=/usr/local/hbase/conf
4.2.2 hbase-site.xml 配置hbase
[root@hadoop01 conf]# vim hbase-site.xml <configuration> <property><name>hbase.rootdir</name><!-- hbase存放數(shù)據(jù)目錄 --><value>hdfs://hadoop01:9000/hbase/hbase_db</value><!-- 端口要和Hadoop的fs.defaultFS端口一致--> </property> <property><name>hbase.cluster.distributed</name><!-- 是否分布式部署 --><value>true</value> </property> <property><name>hbase.zookeeper.quorum</name><!-- zookooper 服務(wù)啟動(dòng)的節(jié)點(diǎn),只能為奇數(shù)個(gè) --><value>hadoop01,hadoop02,hadoop03</value> </property> <property><!--zookooper配置、日志等的存儲(chǔ)位置,必須為以存在 --><name>hbase.zookeeper.property.dataDir</name><value>/data/hbase/zookeeper</value> </property> <property><!--hbase master --><name>hbase.master</name><value>hadoop01</value> </property> <property><!--hbase web 端口 --><name>hbase.master.info.port</name><value>16666</value> </property> </configuration>?注:zookeeper有這樣一個(gè)特性:
- ?集群中只要有過半的機(jī)器是正常工作的,那么整個(gè)集群對(duì)外就是可用的。
- ?也就是說如果有2個(gè)zookeeper,那么只要有1個(gè)死了zookeeper就不能用了,因?yàn)?/span>1沒有過半,所以2個(gè)zookeeper的死亡容忍度為0;
- ?同理,要是有3個(gè)zookeeper,一個(gè)死了,還剩下2個(gè)正常的,過半了,所以3個(gè)zookeeper的容忍度為1;
- ?再多列舉幾個(gè):2->0 ; 3->1 ; 4->1 ; 5->2 ; 6->2 會(huì)發(fā)現(xiàn)一個(gè)規(guī)律,2n和2n-1的容忍度是一樣的,都是n-1,所以為了更加高效,何必增加那一個(gè)不必要的zookeeper
?
4.2.3 指定集群節(jié)點(diǎn)
[root@hadoop01 conf]# vim regionservers hadoop01 hadoop02 hadoop03
5、啟動(dòng)Hbase集群
5.1 配置hbase命令環(huán)境變量
[root@hadoop01 ~]# vim /etc/profile.d/hbase.sh export HBASE_HOME=/usr/local/hbase PATH=$HBASE_HOME/bin:$PATH
5.2 啟動(dòng)前準(zhǔn)備
[root@hadoop01 ~]# mkdir -p /data/hbase/zookeeper [root@hadoop01 ~]# vim /data/hbase/rsync.sh #在集群內(nèi)所有機(jī)器上都創(chuàng)建所需要的目錄 for i in hadoop02 hadoop03do sudo rsync -a /data/hbase $i:/data/sudo scp -p /etc/profile.d/hbase.sh $i:/etc/profile.d/ done #復(fù)制hbase配置到其他機(jī)器 for i in hadoop02 hadoop03do sudo rsync -a /usr/local/hbase-2.1.3 $i:/usr/local/ done [root@hadoop01 conf]# chown -R along.along /data/hbase [root@hadoop01 ~]# /data/hbase/rsync.sh hbase.sh 100% 62 0.1KB/s 00:00 hbase.sh 100% 62 0.1KB/s 00:00
5.3 啟動(dòng)hbase
注:只需在hadoop01服務(wù)器上操作即可。
(1)啟動(dòng)
[along@hadoop01 ~]$ start-hbase.sh hadoop03: running zookeeper, logging to /usr/local/hbase/logs/hbase-along-zookeeper-hadoop03.out hadoop01: running zookeeper, logging to /usr/local/hbase/logs/hbase-along-zookeeper-hadoop01.out hadoop02: running zookeeper, logging to /usr/local/hbase/logs/hbase-along-zookeeper-hadoop02.out ... ...(2)驗(yàn)證
---主hbase [along@hadoop01 ~]$ jps 4480 DataNode 23411 HQuorumPeer # zookeeper進(jìn)程 4950 NodeManager 24102 Jps 5447 NameNode 23544 HMaster # hbase master進(jìn)程 4842 ResourceManager 23711 HRegionServer ---2個(gè)從 [along@hadoop02 ~]$ jps 12948 HRegionServer # hbase slave進(jìn)程 3958 SecondaryNameNode 13209 Jps 12794 HQuorumPeer # zookeeper進(jìn)程 3789 DataNode 4367 NodeManager [along@hadoop03 ~]$ jps 12226 NodeManager 19559 Jps 19336 HRegionServer # hbase slave進(jìn)程 19178 HQuorumPeer # zookeeper進(jìn)程 2475 DataNode
5.4 頁(yè)面查看hbase狀態(tài)
網(wǎng)頁(yè)訪問http://hadoop01:16666
?
6、簡(jiǎn)單操作Hbase
6.1 hbase shell基本操作命令
| 名稱 | 命令表達(dá)式 |
| 創(chuàng)建表 | create '表名稱','列簇名稱1','列簇名稱2'....... |
| 添加記錄 | put '表名稱', '行名稱','列簇名稱:','值' |
| 查看記錄 | get '表名稱','行名稱' |
| 查看表中的記錄總數(shù) | count '表名稱' |
| 刪除記錄 | delete '表名',行名稱','列簇名稱' |
| 刪除表 | ①disable '表名稱' ②drop '表名稱' |
| 查看所有記錄 | scan '表名稱' |
| 查看某個(gè)表某個(gè)列中所有數(shù)據(jù) | scan '表名稱',['列簇名稱:'] |
| 更新記錄 | 即重寫一遍進(jìn)行覆蓋 |
?
6.2 一般操作
(1)啟動(dòng)hbase 客戶端
[along@hadoop01 ~]$ hbase shell #需要等待一些時(shí)間 SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/usr/local/hbase-1.4.9/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/usr/local/hadoop-3.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] HBase Shell Use "help" to get list of supported commands. Use "exit" to quit this interactive shell. Version 1.4.9, rd625b212e46d01cb17db9ac2e9e927fdb201afa1, Wed Dec 5 11:54:10 PST 2018hbase(main):001:0>
(2)查詢集群狀態(tài)
hbase(main):001:0> status 1 active master, 0 backup masters, 3 servers, 0 dead, 0.6667 average load
(3)查詢hive版本
hbase(main):002:0> version 1.4.9, rd625b212e46d01cb17db9ac2e9e927fdb201afa1, Wed Dec 5 11:54:10 PST 2018
6.3 DDL操作
(1)創(chuàng)建一個(gè)demo表,包含 id和info 兩個(gè)列簇
hbase(main):001:0> create 'demo','id','info' 0 row(s) in 23.2010 seconds=> Hbase::Table - demo
(2)獲得表的描述
hbase(main):002:0> list TABLE demo 1 row(s) in 0.6380 seconds=> ["demo"] ---獲取詳細(xì)描述 hbase(main):003:0> describe 'demo' Table demo is ENABLED demo COLUMN FAMILIES DESCRIPTION {NAME => 'id', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => ' 0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'} {NAME => 'info', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS = > 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS =>'0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'} 2 row(s) in 0.3500 seconds
(3)刪除一個(gè)列簇
注:任何刪除操作,都需要先disable表
hbase(main):004:0> disable 'demo' 0 row(s) in 2.5930 secondshbase(main):006:0> alter 'demo',{NAME=>'info',METHOD=>'delete'} Updating all regions with the new schema... 1/1 regions updated. Done. 0 row(s) in 4.3410 secondshbase(main):007:0> describe 'demo' Table demo is DISABLED demo COLUMN FAMILIES DESCRIPTION {NAME => 'id', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'F ALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'} 1 row(s) in 0.1510 seconds
(4)刪除一個(gè)表
要先disable表,再drop
hbase(main):008:0> list TABLE demo 1 row(s) in 0.1010 seconds=> ["demo"] hbase(main):009:0> disable 'demo' 0 row(s) in 0.0480 secondshbase(main):010:0> is_disabled 'demo' #判斷表是否disable true 0 row(s) in 0.0210 secondshbase(main):013:0> drop 'demo' 0 row(s) in 2.3270 secondshbase(main):014:0> list #已經(jīng)刪除成功 TABLE 0 row(s) in 0.0250 seconds=> [] hbase(main):015:0> is_enabled 'demo' #查詢是否存在demo表ERROR: Unknown table demo!
6.4 DML操作
(1)插入數(shù)據(jù)
hbase(main):024:0> create 'demo','id','info' 0 row(s) in 10.0720 seconds=> Hbase::Table - demo hbase(main):025:0> is_enabled 'demo' true 0 row(s) in 0.1930 secondshbase(main):030:0> put 'demo','example','id:name','along' 0 row(s) in 0.0180 secondshbase(main):039:0> put 'demo','example','id:sex','male' 0 row(s) in 0.0860 secondshbase(main):040:0> put 'demo','example','id:age','24' 0 row(s) in 0.0120 secondshbase(main):041:0> put 'demo','example','id:company','taobao' 0 row(s) in 0.3840 secondshbase(main):042:0> put 'demo','taobao','info:addres','china' 0 row(s) in 0.1910 secondshbase(main):043:0> put 'demo','taobao','info:company','alibaba' 0 row(s) in 0.0300 secondshbase(main):044:0> put 'demo','taobao','info:boss','mayun' 0 row(s) in 0.1260 seconds
(2)獲取demo表的數(shù)據(jù)
hbase(main):045:0> get 'demo','example' COLUMN CELL id:age timestamp=1552030411620, value=24 id:company timestamp=1552030467196, value=taobao id:name timestamp=1552030380723, value=along id:sex timestamp=1552030392249, value=male 1 row(s) in 0.8850 secondshbase(main):046:0> get 'demo','taobao' COLUMN CELL info:addres timestamp=1552030496973, value=china info:boss timestamp=1552030532254, value=mayun info:company timestamp=1552030520028, value=alibaba 1 row(s) in 0.2500 secondshbase(main):047:0> get 'demo','example','id' COLUMN CELL id:age timestamp=1552030411620, value=24 id:company timestamp=1552030467196, value=taobao id:name timestamp=1552030380723, value=along id:sex timestamp=1552030392249, value=male 1 row(s) in 0.3150 secondshbase(main):048:0> get 'demo','example','info' COLUMN CELL 0 row(s) in 0.0200 secondshbase(main):049:0> get 'demo','taobao','id' COLUMN CELL 0 row(s) in 0.0410 secondshbase(main):053:0> get 'demo','taobao','info' COLUMN CELL info:addres timestamp=1552030496973, value=china info:boss timestamp=1552030532254, value=mayun info:company timestamp=1552030520028, value=alibaba 1 row(s) in 0.0240 secondshbase(main):055:0> get 'demo','taobao','info:boss' COLUMN CELL info:boss timestamp=1552030532254, value=mayun 1 row(s) in 0.1810 seconds
(3)更新一條記錄
hbase(main):056:0> put 'demo','example','id:age','88' 0 row(s) in 0.1730 secondshbase(main):057:0> get 'demo','example','id:age' COLUMN CELL id:age timestamp=1552030841823, value=88 1 row(s) in 0.1430 seconds
(4)獲取時(shí)間戳數(shù)據(jù)
大家應(yīng)該看到timestamp這個(gè)標(biāo)記
hbase(main):059:0> get 'demo','example',{COLUMN=>'id:age',TIMESTAMP=>1552030841823} COLUMN CELL id:age timestamp=1552030841823, value=88 1 row(s) in 0.0200 secondshbase(main):060:0> get 'demo','example',{COLUMN=>'id:age',TIMESTAMP=>1552030411620} COLUMN CELL id:age timestamp=1552030411620, value=24 1 row(s) in 0.0930 seconds
(5)全表顯示
hbase(main):061:0> scan 'demo' ROW COLUMN+CELL example column=id:age, timestamp=1552030841823, value=88 example column=id:company, timestamp=1552030467196, value=taobao example column=id:name, timestamp=1552030380723, value=along example column=id:sex, timestamp=1552030392249, value=male taobao column=info:addres, timestamp=1552030496973, value=china taobao column=info:boss, timestamp=1552030532254, value=mayun taobao column=info:company, timestamp=1552030520028, value=alibaba 2 row(s) in 0.3880 seconds
(6)刪除id為example的'id:age'字段
hbase(main):062:0> delete 'demo','example','id:age' 0 row(s) in 1.1360 secondshbase(main):063:0> get 'demo','example' COLUMN CELL id:company timestamp=1552030467196, value=taobao id:name timestamp=1552030380723, value=along id:sex timestamp=1552030392249, value=male
(7)刪除整行
hbase(main):070:0> deleteall 'demo','taobao' 0 row(s) in 1.8140 secondshbase(main):071:0> get 'demo','taobao' COLUMN CELL 0 row(s) in 0.2200 seconds
(8)給example這個(gè)id增加'id:age'字段,并使用counter實(shí)現(xiàn)遞增
hbase(main):072:0> incr 'demo','example','id:age' COUNTER VALUE = 1 0 row(s) in 3.2200 secondshbase(main):073:0> get 'demo','example','id:age' COLUMN CELL id:age timestamp=1552031388997, value=\x00\x00\x00\x00\x00\x00\x00\x01 1 row(s) in 0.0280 secondshbase(main):074:0> incr 'demo','example','id:age' COUNTER VALUE = 2 0 row(s) in 0.0340 secondshbase(main):075:0> incr 'demo','example','id:age' COUNTER VALUE = 3 0 row(s) in 0.0420 secondshbase(main):076:0> get 'demo','example','id:age' COLUMN CELL id:age timestamp=1552031429912, value=\x00\x00\x00\x00\x00\x00\x00\x03 1 row(s) in 0.0690 secondshbase(main):077:0> get_counter 'demo','example','id:age' #獲取當(dāng)前count值 COUNTER VALUE = 3
(9)清空整個(gè)表
hbase(main):078:0> truncate 'demo' Truncating 'demo' table (it may take a while):- Disabling table...- Truncating table... 0 row(s) in 33.0820 seconds可以看出hbase是先disable掉該表,然后drop,最后重新create該表來實(shí)現(xiàn)清空該表。
?
轉(zhuǎn)載于:https://www.cnblogs.com/along21/p/10496468.html
總結(jié)
以上是生活随笔為你收集整理的Hadoop+Hbase分布式集群架构“完全篇”的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Android】SDDL刷机
- 下一篇: 统计学习方法 学习笔记(十):决策树