2020-10-11 LMI线性矩阵不等式的一些知识
線性矩陣不等式的常用引理:
Lemma 1:MMM 是對稱陣,那么
λmax?(M)≤t?M?tI≤0\lambda_{\max }(M) \leq t \Longleftrightarrow M-t I \leq 0 λmax?(M)≤t?M?tI≤0
Proof. Note that for an arbitrary matrix MMM with an eigenvalue sss and a corresponding eigenvector x,x,x, there holds
(M?tI)x=Mx?tx=(s?t)x(M-t I) x=M x-t x=(s-t) x (M?tI)x=Mx?tx=(s?t)x
This states that for an arbitrary matrix MMM there holds
λ(M?tI)=λ(M)?t\lambda(M-t I)=\lambda(M)-t λ(M?tI)=λ(M)?t
Thus, when MMM is symmetric, we have
λmax?(M)≤t?λmax?(M?tI)≤0?M?tI≤0\begin{aligned} \lambda_{\max }(M) \leq t & \Longleftrightarrow \lambda \max (M-t I) \leq 0 \\ & \Longleftrightarrow M-t I \leq 0 \end{aligned} λmax?(M)≤t??λmax(M?tI)≤0?M?tI≤0?
Lemma 2:AAA 是具有合適維數(shù)的矩陣,ttt 是一個正數(shù),那么
ATA?t2I≤0?[?tIAAT?tI]≤0.A^{\mathrm{T}} A-t^{2} I \leq 0 \Longleftrightarrow\left[\begin{array}{cc}-t I & A \\ A^{\mathrm{T}} & -t I\end{array}\right] \leq 0.ATA?t2I≤0?[?tIAT?A?tI?]≤0.
Proof: Put
Q=[IA0tI]Q=\left[\begin{array}{ll} I & A \\ 0 & t I \end{array}\right] Q=[I0?AtI?]
then QQQ is nonsingular since t>0.t>0 .t>0. Note that
QT[?tIAAT?tI]Q=[?tI00t(ATA?t2I)]Q^{\mathrm{T}}\left[\begin{array}{cc} -t I & A \\ A^{\mathrm{T}} & -t I \end{array}\right] Q=\left[\begin{array}{cc} -t I & 0 \\ 0 & t\left(A^{\mathrm{T}} A-t^{2} I\right) \end{array}\right] QT[?tIAT?A?tI?]Q=[?tI0?0t(ATA?t2I)?]
again in view of the fact that t>0,t>0,t>0, it is clearly observed from the above relation that the equivalence in (1.2.4)(1.2 .4)(1.2.4) holds. Based on the above lemma, we can derive the following conclusion.
參考資料:
總結(jié)
以上是生活随笔為你收集整理的2020-10-11 LMI线性矩阵不等式的一些知识的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2020-10-09 IEEE参考文献I
- 下一篇: 2020-10-13 多智能体基本图论