When A11A_{11}A11? is nonsingular, A22?A21A11?1A12A_{22}-A_{21} A_{11}^{-1} A_{12}A22??A21?A11?1?A12? is called the Schur complement of A11A_{11}A11? in AAA, denoted by Sch(A11)S_{c h}\left(A_{11}\right)Sch?(A11?).
When A22A_{22}A22? is nonsingular, A11?A12A22?1A21A_{11}-A_{12} A_{22}^{-1} A_{21}A11??A12?A22?1?A21? is called the Schur complement of A22A_{22}A22? in AAA, denoted by Sch?(A22)S_{\text {ch }}\left(A_{22}\right)Sch??(A22?).
Lemma 1. Let =eq\stackrel{eq}{=}=eq represent the equivalence relation between two matrices. Then for the partitioned matrix AAA the following conclusions hold.
When A11A_{11}A11? is nonsingular, A=eq[A1100A22?A21A11?1A12]=[A1100Sch(A11)]A \stackrel{eq}{=}\left[\begin{array}{cc} A_{11} & 0 \\ 0 & A_{22}-A_{21} A_{11}^{-1} A_{12} \end{array}\right]=\left[\begin{array}{cc} A_{11} & 0 \\ 0 & S_{ch}\left(A_{11}\right) \end{array}\right] A=eq[A11?0?0A22??A21?A11?1?A12??]=[A11?0?0Sch?(A11?)?] and hence AAA is nonsingular if and only if Sch(A11)S_{c h}\left(A_{11}\right)Sch?(A11?) is nonsingular, and det?A=det?A11det?Sch(A11)\operatorname{det} A=\operatorname{det} A_{11}\operatorname{det} S_{c h}\left(A_{11}\right) detA=detA11?detSch?(A11?)
When A22A_{22}A22? is nonsingular, A=eq[A11?A12A22?1A2100A22]=[Sch(A22)00A22]A \stackrel{eq}{=}\left[\begin{array}{cc} A_{11}-A_{12} A_{22}^{-1} A_{21} & 0 \\ 0 & A_{22} \end{array}\right]=\left[\begin{array}{cc} S_{c h}\left(A_{22}\right) & 0 \\ 0 & A_{22} \end{array}\right] A=eq[A11??A12?A22?1?A21?0?0A22??]=[Sch?(A22?)0?0A22??] hence AAA is nonsingular if and only if Sch(A22)S_{c h}\left(A_{22}\right)Sch?(A22?) is nonsingular, and det?A=det?A22det?Sch(A22)\operatorname{det} A=\operatorname{det} A_{22}\operatorname{det} S_{c h}\left(A_{22}\right)detA=detA22?detSch?(A22?). note: refer to https://blog.csdn.net/weixin_44382195/article/details/102991813 for the definition of the equivalence relation.
Lemma 2. Given the matrices A11=A11T,A22=A22TA_{11}=A_{11}^{T}, A_{22}=A_{22}^{T}A11?=A11T?,A22?=A22T? and A12A_{12}A12? with appropriate dimensions. The following LMIs are equivalent: