GAN论文整理
原始GAN
Goodfellow和Bengio等人發表在NIPS 2014年的文章Generative adversary network,是生成對抗網絡的開創文章,論文思想啟發自博弈論中的二人零和博弈。在二人零和博弈中,兩位博弈方的利益之和為零或一個常數,即一方有所得,另一方必有所失。GAN模型中的兩位博弈方分別由生成式模型(generative model)和判別式模型(discriminative model)充當。生成模型G捕捉樣本數據的分布,判別模型D是一個二分類器,估計一個樣本來自于訓練數據(而非生成數據)的概率。G和D一般都是非線性映射函數,例如多層感知機、卷積神經網絡等。
如圖所示,左圖是一個判別式模型,當輸入訓練數據x時,期待輸出高概率(接近1);右圖下半部分是生成模型,輸入是一些服從某一簡單分布(例如高斯分布)的隨機噪聲z,輸出是與訓練圖像相同尺寸的生成圖像。向判別模型D輸入生成樣本,對于D來說期望輸出低概率(判斷為生成樣本),對于生成模型G來說要盡量欺騙D,使判別模型輸出高概率(誤判為真實樣本),從而形成競爭與對抗。
GAN.png
GAN優勢很多:根據實際的結果,看上去產生了更好的樣本;GAN能訓練任何一種生成器網絡;GAN不需要設計遵循任何種類的因式分解的模型,任何生成器網絡和任何鑒別器都會有用;GAN無需利用馬爾科夫鏈反復采樣,無需在學習過程中進行推斷,回避了近似計算棘手的概率的難題。
GAN主要存在的以下問題:網絡難以收斂,目前所有的理論都認為GAN應該在納什均衡上有很好的表現,但梯度下降只有在凸函數的情況下才能保證實現納什均衡。
GAN發展
一方面GAN的發展很快,這里只是簡單粗略將相關論文分了幾類,歡迎反饋,持續更新。此外最近ICLR 2017 在進行Open Review,可以關注下ICLR 2017 Conference Track,也有相應論文筆記分享ICLR 2017 | GAN Missing Modes 和 GAN
GAN從2014年到現在發展很快,特別是最近ICLR 2016/2017關于GAN的論文很多,GAN現在有很多問題還有到解決,潛力很大。總體可以將已有的GANs論文分為以下幾類
GAN Theory
此類關注與無監督GAN本身原理的研究:比較兩個分布的距離;用DL的一些方法讓GAN快速收斂等等。相關論文有:
- GAN: Goodfellow, Ian, et al. "Generative adversarial nets."?Advances in Neural Information Processing Systems. 2014.
- LAPGAN: Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks."?Advances in neural information processing systems. 2015.
- DCGAN: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks."?arXiv preprint arXiv:1511.06434?(2015).
- Improved GAN: Salimans, Tim, et al. "Improved techniques for training gans."?arXiv preprint arXiv:1606.03498?(2016).
- InfoGAN: Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets."?arXiv preprint arXiv:1606.03657(2016).**
- EnergyGAN: Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based Generative Adversarial Network."?arXiv preprint arXiv:1609.03126?(2016).
- Creswell, Antonia, and Anil A. Bharath. "Task Specific Adversarial Cost Function."?arXiv preprint arXiv:1609.08661?(2016).
- f-GAN: Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization."?arXiv preprint arXiv:1606.00709?(2016).
- Unrolled Generative Adversarial Networks, ICLR 2017 Open Review
- Improving Generative Adversarial Networks with Denoising Feature Matching, ICLR 2017 Open Review
- Mode Regularized Generative Adversarial Networks, ICLR 2017 Open Review
- b-GAN: Unified Framework of Generative Adversarial Networks, ICLR 2017 Open Review
- Mohamed, Shakir, and Balaji Lakshminarayanan. "Learning in Implicit Generative Models."?arXiv preprint arXiv:1610.03483?(2016).
GAN in Semi-supervised
此類研究將GAN用于半監督學習,相關論文有:
- Springenberg, Jost Tobias. "Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks."?arXiv preprint arXiv:1511.06390?(2015).
- Odena, Augustus. "Semi-Supervised Learning with Generative Adversarial Networks."?arXiv preprint arXiv:1606.01583?(2016).
Muti-GAN
此類研究將多個GAN進行組合,相關論文有:
- CoupledGAN: Liu, Ming-Yu, and Oncel Tuzel. "Coupled Generative Adversarial Networks."?arXiv preprint arXiv:1606.07536?(2016).
- Wang, Xiaolong, and Abhinav Gupta. "Generative Image Modeling using Style and Structure Adversarial Networks."?arXiv preprint arXiv:1603.05631(2016).
- Generative Adversarial Parallelization, ICLR 2017 Open Review
- LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation, ICLR 2017 Open Review
GAN with other Generative model
此類研究將GAN與其他生成模型組合,相關論文有:
- Dosovitskiy, Alexey, and Thomas Brox. "Generating images with perceptual similarity metrics based on deep networks."?arXiv preprint arXiv:1602.02644(2016).
- Larsen, Anders Boesen Lindbo, S?ren Kaae S?nderby, and Ole Winther. "Autoencoding beyond pixels using a learned similarity metric."?arXiv preprint arXiv:1512.09300?(2015).
- Theis, Lucas, and Matthias Bethge. "Generative image modeling using spatial lstms."?Advances in Neural Information Processing Systems. 2015.
GAN with RNN
此類研究將GAN與RNN結合(也以參考Pixel RNN),相關論文有:
- Im, Daniel Jiwoong, et al. "Generating images with recurrent adversarial networks."?arXiv preprint arXiv:1602.05110?(2016).
- Kwak, Hanock, and Byoung-Tak Zhang. "Generating Images Part by Part with Composite Generative Adversarial Networks."?arXiv preprint arXiv:1607.05387?(2016).
- Yu, Lantao, et al. "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient."?arXiv preprint arXiv:1609.05473?(2016).
GAN in Application
此類研究將GAN的實際運用(不包括圖像生成),相關論文有:
- Zhu, Jun-Yan, et al. "Generative visual manipulation on the natural image manifold."?European Conference on Computer Vision. Springer International Publishing, 2016.
- Creswell, Antonia, and Anil Anthony Bharath. "Adversarial Training For Sketch Retrieval."?European Conference on Computer Vision. Springer International Publishing, 2016.
- Reed, Scott, et al. "Generative adversarial text to image synthesis."?arXiv preprint arXiv:1605.05396?(2016).
- Ravanbakhsh, Siamak, et al. "Enabling Dark Energy Science with Deep Generative Models of Galaxy Images."?arXiv preprint arXiv:1609.05796(2016).
- Abadi, Martín, and David G. Andersen. "Learning to Protect Communications with Adversarial Neural Cryptography."?arXiv preprint arXiv:1610.06918(2016).
- Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional Image Synthesis With Auxiliary Classifier GANs."?arXiv preprint arXiv:1610.09585?(2016).
- Ledig, Christian, et al. "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network."?arXiv preprint arXiv:1609.04802?(2016).
- Nguyen, Anh, et al. "Synthesizing the preferred inputs for neurons in neural networks via deep generator networks."?arXiv preprint arXiv:1605.09304(2016).
原文地址: http://www.jianshu.com/p/2acb804dd811
總結
- 上一篇: StackGAN mini review
- 下一篇: ICLR 2017 | GAN Miss