Tensorflow2.0与Tensorflow1.0的理解
生活随笔
收集整理的這篇文章主要介紹了
Tensorflow2.0与Tensorflow1.0的理解
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
Tensorflow1.x與Tensorflow2.x的理解
首先,作者接觸過tf1.0和tf2.0,結合說明一下!
Tensorflow0.x.x
這個版本貌似很難install到,筆者安裝好幾次都是失敗,但是不可否認的是現在還有許多github開源的人工智能源碼還是使用tf0.x.x版本。這里筆者只能提供一個0.x.x升級到1.x.x代碼的腳本(引用小伙伴的博客)。
Tensorflow1.x
Tensorflow1.x最重要的在于Graph的概念,個人認為搭建相對較為麻煩,但是tf1.x也較為靈活。
Tensorflow2.x
Tensorflow2.x兼容keras,非常好用。
考慮CNN模型
tensorflow1.x.x版本如下:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.environ["CUDA_DEVICE_ORDER"] = "0,1"mnist = input_data.read_data_sets("MNIST_data",one_hot=True)def compute_accuracy(v_xs,v_ys):global predictiony_pre = sess.run(prediction,feed_dict ={xs:v_xs,keep_prob:1})correct_predicton = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))accuracy = tf.reduce_mean(tf.cast(correct_predicton,tf.float32))result = sess.run(accuracy,feed_dict = {xs:v_xs,ys:v_ys,keep_prob:1})return resultdef weight_variable(shape):initial = tf.truncated_normal(shape=shape,stddev=0.1)return tf.Variable(initial)def bias_variable(shape):initial = tf.constant(0.1,shape=shape)return tf.Variable(initial)def conv2d(x,W):#stride [1,x_movement,y_movement,1]#Must have strides[0] = strides[3] = 1return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME")def max_pool_2x2(x):# stride [1,x_movement,y_movement,1]return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")def add_layer(inputs,in_size,out_size,activation_function=None):Weight = tf.Variable(tf.random_normal([in_size,out_size]))biases = tf.Variable(tf.zeros([1,out_size])+0.1)Wx_plus_b = tf.matmul(inputs,Weight)+biasesif activation_function is None:outputs = Wx_plus_belse:outputs = activation_function(Wx_plus_b)return outputs#define placeholder for inputs to networkxs = tf.placeholder(tf.float32,[None,784]) ys = tf.placeholder(tf.float32,[None,10]) keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs,[-1,28,28,1])## conv1 layer ## W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32 h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32## conv2 layer ## W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64 h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64# #func1 layer # input = tf.reshape(h_pool2,[-1,7*7*64]) # fc1 = add_layer(input,7*7*64,1024,activation_function=tf.nn.relu) # fc1_drop = tf.nn.dropout(fc1,keep_prob) # # #func2 layer # fc2 = add_layer(fc1_drop,1024,10,activation_function=tf.nn.softmax) # prediction = fc2## func1 layer ## W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64] h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)## func2 layer ## W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)#loss cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)config = tf.ConfigProto(log_device_placement=True) config.gpu_options.allow_growth = Truesess = tf.Session(config=config)sess.run(tf.initialize_all_variables())for i in range(1000):batch_xs,batch_ys = mnist.train.next_batch(100)sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})if i%50 ==0:print(compute_accuracy(mnist.test.images,mnist.test.labels))tensorflow2.x.x版本如下:
from tensorflow.keras import Sequential,layers import tensorflow as tf network = Sequential([ # 網絡容器layers.Conv2D(6,kernel_size=3,strides=1), # 第一個卷積層, 6 個3x3 卷積核layers.MaxPooling2D(pool_size=2,strides=2), # 高寬各減半的池化層layers.ReLU(), # 激活函數layers.Conv2D(16,kernel_size=3,strides=1), # 第二個卷積層, 16 個3x3 卷積核layers.MaxPooling2D(pool_size=2,strides=2), # 高寬各減半的池化層layers.ReLU(), # 激活函數layers.Flatten(), # 打平層,方便全連接層處理layers.Dense(120, activation='relu'), # 全連接層,120 個節點layers.Dense(84, activation='relu'), # 全連接層,84 節點layers.Dense(10) # 全連接層,10 個節點]) # build 一次網絡模型,給輸入X 的形狀,其中4 為隨意給的batchsz network.build(input_shape=(4, 28, 28, 1)) # 統計網絡信息 network.summary() # network.fit(x, y) 通過x和y訓練模型總結
兩者皆有好壞,tensorflow1.x.x的熱度勝于tensorflow2.x.x,這是由于目前tensorflow2.x.x版本的源碼不多。
關于作者
如果需要將tensorflow1.x.x不通過腳本的方式轉換為tensorflow2.x.x可以聯系作者(QQ郵箱:1055074897@qq.com)
總結
以上是生活随笔為你收集整理的Tensorflow2.0与Tensorflow1.0的理解的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2020年中国智能客服行业研究报告
- 下一篇: 乐视这波操作有点秀