凝聚式层次聚类 java_凝聚法层次聚类之ward linkage method
凝聚法分層聚類中有一堆方法可以用來算兩點(pair)之間的距離:歐式,歐式平方,manhattan等,還有一堆方法可以算類(cluster)與類之間的距離,什么single-linkage、complete-linkage、還有這個ward linkage。(即最短最長平均,離差平方和)
其他的好像都挺好理解,就是最后這個有點麻煩。。。
這個方法說白了叫離差平方和(這是個啥?)。是ward寫那篇文章時候舉的一個特例。這篇文章是說分層凝聚聚類方法的一個通用流程。在選擇合并類與類時基于一個object function optimise value,這個object function可以是任何反應研究目的的方程,所以許多標準的方法也被歸入了。為了闡明這個過程,ward舉了一個例子,用的object function 是error sum of squares(ESS),這個例子就成為ward's method。
找了N多資料,終于把這個算法的過程搞清楚了。首先輸入的是一個距離矩陣,知道每兩個點之間的距離。然后初始化是每個點做為一個cluster,假設總共N組,此時每個組內的ESS都是0,ESS的公式,如下(從原稿《Hierarchical Grouping To Optimize An Objective Function》上摘的):
我當時還有點蒙ESS是個啥?——我現在知道了,凡是蒙的都是概率沒學好(我是說我)……先從wiki上轉個公式過來:
這是方差的公式,寫的再通俗點,就是:
等號兩邊同時乘上n,好了,你應該知道ESS是啥了——ESS就是【方差×n】!so easy了~~
但是等下——這看起來是個一維的公式啊——因為你已經知道ESS是【方差×n】了,那多維的還不會算嗎?先求所有點的均值點
,然后再算所有點到這個均值點(central)的距離(距離公式你得自己定,見開頭,但是最后算出來就是一個數),然后把所有距離平方后加起來(此時即為方差乘上n),就得到ESS了。
說了半天光說ESS了,列位看官,人只有一張嘴,故ESS此處按下不表,接著說ward method。ward method是要求每次合并后ESS的增量最小,這怎么講呢?還是上圖吧(圖是從youtube上的一個教程里截的):
只看最下面ward's method的兩個圖好了,先看下面的圖,合并前紅色組和黃色組分別能算各自的ESS,總的ESS是什么呢?很簡單,加起來就好了,即:
ESS(總-合并前)=ESS(紅)+ESS(黃)+ESS(其他沒畫出來的組)
如果合并這兩個組,則可以作為一個新組再算一個ESS,此時
ESS(總-合并后)=ESS(紅黃)+ESS(其他沒畫出來的組)
你注意這里還沒有真的合并,只是算了一下合并紅黃兩組的“成本”(即:ESS(總-合并后)-ESS(總-合并前),當然這個成本肯定是增加的),如果總共有N個組,必須把每兩個組合并的成本都算一遍,也就是算N×(N-1)/2個數出來,然后找里面合并后成本最小的兩組合并。然后再重復這個過程。
我說清楚了吧!?
嗯,至于畫的那個樹狀圖的高度,可以認為是上面說的這個“成本”。
對了,還得說一下這個公式:
啥意思呢,就是說,如果用ward's method來度量兩個cluster之間的距離,那么兩個cluster之間的距離就是把這兩個cluster合并后新cluster的ESS,其中x就表示合并前兩個cluster中所有點,而
就是合并后那個新cluster的中心點(均值點),
就表示每個點x到中心點的距離,平方后加起來,就是ESS了。
好了,總結一下,ward's method是凝聚法分層聚類中一種度量cluster之間距離的方法。按照這個方法,任意兩個cluster之間的距離就是這兩個cluster合并后新cluster的ESS
摘要: ward linkage method是什么不介紹了,只說下怎么算,有一個快速的計算方法叫Lance-Williams Algorithm可以大大簡化ward method的計算
ward's method是分層聚類凝聚法的一種常見的度量cluster之間距離的方法,其基本過程是這樣的(參考:http://blog.sciencenet.cn/blog-2827057-921772.html?)
計算每個cluster的ESS
計算總的ESS
枚舉所有二項cluster【N個cluster是N*(N-1)/2個二項集】,計算合并這兩個cluster后的總ESS值
選擇總ESS值增長最小的那兩個cluster合并
重復以上過程直到N減少到1
這個方法其實效率比較低,特別是算cluster的ESS值還要先求均值點,然后算距離的平方再求和,不過有一個快速的計算方法叫Lance-Williams Algorithm可以大大簡化ward method的計算。先來一個圖(來源:https://www.youtube.com/watch?v=aXsaFNVzzfI
然后你其實可以發現,這個算法簡化的是合并后更新ESS的那部分過程,比如有ABCDE五個cluster,合并了AB,那么后面要更新CDE到這個AB的距離,怎么算?ESS唄——平方和——好復雜!
那用這個新算法怎么算?答,新算法可以不用ESS的公式計算ESS,直接套用上面那個公式(注意最后絕對值里面應該一個i一個j,他寫錯了)。初始的ESS由兩點之間的距離決定——所以就是說完全不需要算ESS了!
好了,試著寫一下算法:輸入是一個距離矩陣,輸出是一個合并序列[(cluster1id, cluster2id, distance), ...]
clusterDistance=dict() #存放cluster之間的距離,形如'1-2':3表示cluster1與cluster2之間的距離為3
clusterMap=dict() #存放cluster的情況,形如'1':4表示cluster1里面有4個元素(樣本)
clusterCount=0 #每合并一次生成新的序號來命名cluster
defward_linkage_method(distance_matrix):
N=len(distance_matrix)
clusterCount=N-1
for i in range(0,N-1):
for j in range(i,N):
name=getName(i,j)
clusterDistance[name]=distance_matrix[i][j]
for k in range(0,N):
clusterMap[k]=1
while True:
# 查找距離最短的兩個cluster
# clusterDistance里面有冗余(即合并后之前的距離仍在,
# 所以循環以clusterMap為準,這個里面沒有冗余。
tmp=max(clusterDistance.values())
clusterList = clusterMap.keys()
clusterListLength=len(clusterList)
for iii in range(0, clusterListLength-1):
for jjj in range(iii+1, clusterListLength):
name=getName(clusterList[iii], clusterList[jjj])
if tmp > clusterDistance[name]:
i=iii
j=jjj
tmp=clusterDistance[name]
ni=clusterMap[i] # 第i個cluster內的元素數
nj=clusterMap[j]
del clusterMap[i] # 刪掉原來的cluster
del clusterMap[j]
clusterCount+=1 # 新增新的cluster
clusterMap[clusterCount]=ni+nj #新cluster的元素數是之前的總和
print i,j,'->',clusterCount,tmp # 輸出合并信息:i,j合并為clusterCount,合并高度(距離)為tmp
if len(clusterMap)==1:break # 合并到只剩一個集合為止,然后退出
# 更新沒合并的cluster到新合并后的cluster的距離
for k in clusterMap.keys():
if k==clusterCount:continue
else: # 計算新的距離
nk=clusterMap[k]
alpha_i=(ni+nk)/(ni+nj+nk)
alpha_j=(nj+nk)/(ni+nj+nk)
beta= -nk/(ni+nj+nk)
newDistance = alpha_i * clusterDistance[getName(i,k)]
newDistance += alpha_j * clusterDistance[getName(j,k)]
newDistance += beta * clusterDistance[getName(i,j)]
# 把新的距離加入距離集合
clusterDistance[getName(clusterCount,k,'.')]=newDistance
defgetName(i,j):
t=[i,j]
t.sort()
return t[0]+'-'+t[1]
當然了,這段代碼只是一個示意,可以改進的地方還很多。
轉載本文請聯系原作者獲取授權,同時請注明本文來自宋景和科學網博客。
鏈接地址:http://blog.sciencenet.cn/blog-2827057-921772.html
總結
以上是生活随笔為你收集整理的凝聚式层次聚类 java_凝聚法层次聚类之ward linkage method的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: [云炬ThinkPython阅读笔记]2
- 下一篇: [云炬ThinkPython阅读笔记]2