Codeforces632E Thief in a Shop(NTT + 快速幂)
題目
Source
http://codeforces.com/contest/632/problem/E
Description
A thief made his way to a shop.
As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.
The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).
Find all the possible total costs of products the thief can nick into his knapsack.
Input
The first line contains two integers n and k (1?≤?n,?k?≤?1000) — the number of kinds of products and the number of products the thief will take.
The second line contains n integers ai (1?≤?ai?≤?1000) — the costs of products for kinds from 1 to n.
Output
Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.
Sample Input
3 2
1 2 3
5 5
1 1 1 1 1
3 3
3 5 11
Sample Output
2 3 4 5 6
5
9 11 13 15 17 19 21 25 27 33
?
分析
題目大概說給有n種價(jià)值各一的物品,每種數(shù)量都無限多,問取出k個(gè)物品能取出的物品價(jià)值和的所有情況。
?
用母函數(shù)解,價(jià)值為指數(shù)、存不存在為系數(shù),構(gòu)造多項(xiàng)式求k次冪即可。
這自然想到FFT+快速冪求,這樣時(shí)間復(fù)雜度才夠。
FFT直接求的話結(jié)果的系數(shù)最大到達(dá)10001000太爆炸了,當(dāng)然也可以求一次卷積后非0指數(shù)重新賦值成1;不過我想著開頭一次DFT結(jié)尾一次IDFT這樣更快、更輕松點(diǎn),所以用NTT了。。
我NTT模數(shù)取1004535809 WA在20,取998244353 WA在21。。看樣子是系數(shù)取模后變?yōu)?了,數(shù)據(jù)叼叼的。。于是我就兩個(gè)模數(shù)都取,然后4000多ms險(xiǎn)過了。。
?
代碼
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define MAXN 1048576//const long long P=50000000001507329LL; // 190734863287 * 2 ^ 18 + 1 long long P=1004535809; // 479 * 2 ^ 21 + 1 //const long long P=998244353; // 119 * 2 ^ 23 + 1 const int G=3;long long mul(long long x,long long y){return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P; } long long qpow(long long x,long long k,long long p){long long ret=1;while(k){if(k&1) ret=mul(ret,x);k>>=1;x=mul(x,x);}return ret; }long long wn[25]; void getwn(){for(int i=1; i<=21; ++i){int t=1<<i;wn[i]=qpow(G,(P-1)/t,P);} }int len; void NTT(long long y[],int op){for(int i=1,j=len>>1,k; i<len-1; ++i){if(i<j) swap(y[i],y[j]);k=len>>1;while(j>=k){j-=k;k>>=1;}if(j<k) j+=k;}int id=0;for(int h=2; h<=len; h<<=1) {++id;for(int i=0; i<len; i+=h){long long w=1;for(int j=i; j<i+(h>>1); ++j){long long u=y[j],t=mul(y[j+h/2],w);y[j]=u+t;if(y[j]>=P) y[j]-=P;y[j+h/2]=u-t+P;if(y[j+h/2]>=P) y[j+h/2]-=P;w=mul(w,wn[id]);}}}if(op==-1){for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);long long inv=qpow(len,P-2,P);for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);} } void Convolution(long long A[],long long B[],int n){for(len=1; len<(n<<1); len<<=1);for(int i=n; i<len; ++i){A[i]=B[i]=0;}NTT(A,1); NTT(B,1);for(int i=0; i<len; ++i){A[i]=mul(A[i],B[i]);}NTT(A,-1); }long long A[MAXN],B[MAXN],C[MAXN]; long long cnt[MAXN];int main(){getwn();int n,k,a;scanf("%d%d",&n,&k);int mx=0;for(int i=0; i<n; ++i){scanf("%d",&a);++cnt[a];mx=max(mx,a);}for(len=1; len<mx*k; len<<=1);memcpy(A,cnt,sizeof(cnt));NTT(A,1);memcpy(B,A,sizeof(B));--k;int tmp=k;while(k){if(k&1){for(int i=0; i<len; ++i) B[i]=mul(A[i],B[i]);}for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);k>>=1;}NTT(B,-1);P=998244353;getwn();memcpy(A,cnt,sizeof(cnt));NTT(A,1);memcpy(C,A,sizeof(C));k=tmp;while(k){if(k&1){for(int i=0; i<len; ++i) C[i]=mul(A[i],C[i]);}for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);k>>=1;}NTT(C,-1);for(int i=0; i<len; ++i){if(B[i] || C[i]) printf("%d ",i);}return 0; }?
轉(zhuǎn)載于:https://www.cnblogs.com/WABoss/p/5915285.html
總結(jié)
以上是生活随笔為你收集整理的Codeforces632E Thief in a Shop(NTT + 快速幂)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: .net 用户控件ascx.cs注册js
- 下一篇: 【hdu4010】 Query on T