yunyang tensorflow-yolov3 Intel Realsense D435 (并发)使用locals()函数批量配置摄像头运行识别程序并画框(代码记录)(代码示例)
生活随笔
收集整理的這篇文章主要介紹了
yunyang tensorflow-yolov3 Intel Realsense D435 (并发)使用locals()函数批量配置摄像头运行识别程序并画框(代码记录)(代码示例)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
文章目錄
- 20191126
- 20191202-1
- 20191202-2
20191126
# -*- encoding: utf-8 -*- """ @File : test-使用locals()函數批量配置攝像頭運行識別程序并畫框.py @Time : 2019/11/26 11:20 @Author : Dontla @Email : sxana@qq.com @Software: PyCharm """import cv2 import numpy as np import tensorflow as tf import core.utils as utils from core.config import cfg from core.yolov3 import YOLOV3 import pyrealsense2 as rsclass YoloTest(object):def __init__(self):# D·C 191111:__C.TEST.INPUT_SIZE = 544self.input_size = cfg.TEST.INPUT_SIZEself.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE# Dontla 191106注釋:初始化class.names文件的字典信息屬性self.classes = utils.read_class_names(cfg.YOLO.CLASSES)# D·C 191115:類數量屬性self.num_classes = len(self.classes)self.anchors = np.array(utils.get_anchors(cfg.YOLO.ANCHORS))# D·C 191111:__C.TEST.SCORE_THRESHOLD = 0.3self.score_threshold = cfg.TEST.SCORE_THRESHOLD# D·C 191120:__C.TEST.IOU_THRESHOLD = 0.45self.iou_threshold = cfg.TEST.IOU_THRESHOLDself.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY# D·C 191120:__C.TEST.ANNOT_PATH = "./data/dataset/Dontla/20191023_Artificial_Flower/test.txt"self.annotation_path = cfg.TEST.ANNOT_PATH# D·C 191120:__C.TEST.WEIGHT_FILE = "./checkpoint/f_g_c_weights_files/yolov3_test_loss=15.8845.ckpt-47"self.weight_file = cfg.TEST.WEIGHT_FILE# D·C 191115:可寫標記(bool類型值)self.write_image = cfg.TEST.WRITE_IMAGE# D·C 191115:__C.TEST.WRITE_IMAGE_PATH = "./data/detection/"(識別圖片畫框并標注文本后寫入的圖片路徑)self.write_image_path = cfg.TEST.WRITE_IMAGE_PATH# D·C 191116:TEST.SHOW_LABEL設置為Trueself.show_label = cfg.TEST.SHOW_LABEL# D·C 191120:創建命名空間“input”with tf.name_scope('input'):# D·C 191120:建立變量(創建占位符開辟內存空間)self.input_data = tf.placeholder(dtype=tf.float32, name='input_data')self.trainable = tf.placeholder(dtype=tf.bool, name='trainable')model = YOLOV3(self.input_data, self.trainable)self.pred_sbbox, self.pred_mbbox, self.pred_lbbox = model.pred_sbbox, model.pred_mbbox, model.pred_lbbox# D·C 191120:創建命名空間“指數滑動平均”with tf.name_scope('ema'):ema_obj = tf.train.ExponentialMovingAverage(self.moving_ave_decay)# D·C 191120:在允許軟設備放置的會話中啟動圖形并記錄放置決策。(不懂啥意思。。。)allow_soft_placement=True表示允許tf自動選擇可用的GPU和CPUself.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))# D·C 191120:variables_to_restore()用于加載模型計算滑動平均值時將影子變量直接映射到變量本身self.saver = tf.train.Saver(ema_obj.variables_to_restore())# D·C 191120:用于下次訓練時恢復模型self.saver.restore(self.sess, self.weight_file)def predict(self, image):# D·C 191107:復制一份圖片的鏡像,避免對圖片直接操作改變圖片的內在屬性org_image = np.copy(image)# D·C 191107:獲取圖片尺寸org_h, org_w, _ = org_image.shape# D·C 191108:該函數將源圖結合input_size,將其轉換成預投喂的方形圖像(作者默認544×544,中間為縮小尺寸的源圖,上下空區域為灰圖):image_data = utils.image_preprocess(image, [self.input_size, self.input_size])# D·C 191108:打印維度看看:# print(image_data.shape)# (544, 544, 3)# D·C 191108:創建新軸,不懂要創建新軸干嘛?image_data = image_data[np.newaxis, ...]# D·C 191108:打印維度看看:# print(image_data.shape)# (1, 544, 544, 3)# D·C 191110:三個box可能存放了預測框圖(可能是N多的框,有用的沒用的重疊的都在里面)的信息(但是打印出來的值完全看不懂啊喂?)pred_sbbox, pred_mbbox, pred_lbbox = self.sess.run([self.pred_sbbox, self.pred_mbbox, self.pred_lbbox],feed_dict={self.input_data: image_data,self.trainable: False})# D·C 191110:打印三個box的類型、形狀和值看看:# print(type(pred_sbbox))# print(type(pred_mbbox))# print(type(pred_lbbox))# 都是<class 'numpy.ndarray'># print(pred_sbbox.shape)# print(pred_mbbox.shape)# print(pred_lbbox.shape)# (1, 68, 68, 3, 6)# (1, 34, 34, 3, 6)# (1, 17, 17, 3, 6)# print(pred_sbbox)# print(pred_mbbox)# print(pred_lbbox)# D·C 191110:(-1,6)表示不知道有多少行,反正你給我整成6列,然后concatenate又把它們仨給疊起來,最終得到無數個6列數組(后面self.num_classes)個數存放的貌似是這個框屬于類的概率)pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + self.num_classes)),np.reshape(pred_mbbox, (-1, 5 + self.num_classes)),np.reshape(pred_lbbox, (-1, 5 + self.num_classes))], axis=0)# D·C 191111:打印pred_bbox和它的維度看看:# print(pred_bbox)# print(pred_bbox.shape)# (18207, 6)# D·C 191111:猜測是第一道過濾,過濾掉score_threshold以下的圖片,過濾完之后少了好多:# D·C 191115:bboxes維度為[n,6],前四列是坐標,第五列是得分,第六列是對應類下標bboxes = utils.postprocess_boxes(pred_bbox, (org_h, org_w), self.input_size, self.score_threshold)# D·C 191111:猜測是第二道過濾,過濾掉iou_threshold以下的圖片:bboxes = utils.nms(bboxes, self.iou_threshold)return bboxesdef dontla_evaluate_detect(self):ctx = rs.context()# 判斷攝像頭是否全部連接cam_num = len(ctx.devices)if cam_num < 2:print('攝像頭未全部連接!')else:for i in range(cam_num):locals()['pipeline' + str(i)] = rs.pipeline()locals()['config' + str(i)] = rs.config()locals()['serial' + str(i)] = ctx.devices[i].get_info(rs.camera_info.serial_number)locals()['config' + str(i)].enable_device(locals()['serial' + str(i)])locals()['config' + str(i)].enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)locals()['config' + str(i)].enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)locals()['pipeline' + str(i)].start(locals()['config' + str(i)])# 創建對齊對象(深度對齊顏色)locals()['align' + str(i)] = rs.align(rs.stream.color)try:while True:for i in range(cam_num):locals()['frames' + str(i)] = locals()['pipeline' + str(i)].wait_for_frames()# 獲取對齊幀集locals()['aligned_frames' + str(i)] = locals()['align' + str(i)].process(locals()['frames' + str(i)])# 獲取對齊后的深度幀和彩色幀locals()['aligned_depth_frame' + str(i)] = locals()['aligned_frames' + str(i)].get_depth_frame()locals()['color_frame' + str(i)] = locals()['aligned_frames' + str(i)].get_color_frame()if not locals()['aligned_depth_frame' + str(i)] or not locals()['color_frame' + str(i)]:continue# 獲取顏色幀內參locals()['color_profile' + str(i)] = locals()['color_frame' + str(i)].get_profile()locals()['cvsprofile' + str(i)] = rs.video_stream_profile(locals()['color_profile' + str(i)])locals()['color_intrin' + str(i)] = locals()['cvsprofile' + str(i)].get_intrinsics()locals()['color_intrin_part' + str(i)] = [locals()['color_intrin' + str(i)].ppx,locals()['color_intrin' + str(i)].ppy,locals()['color_intrin' + str(i)].fx,locals()['color_intrin' + str(i)].fy]locals()['color_image' + str(i)] = np.asanyarray(locals()['color_frame' + str(i)].get_data())# D·C 191121:顯示幀看看# cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)# cv2.imshow('RealSense', color_frame)# cv2.waitKey(1)locals()['bboxes_pr' + str(i)] = self.predict(locals()['color_image' + str(i)])locals()['image' + str(i)] = utils.draw_bbox(locals()['color_image' + str(i)],locals()['bboxes_pr' + str(i)],locals()['aligned_depth_frame' + str(i)],locals()['color_intrin_part' + str(i)],show_label=self.show_label)# cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)cv2.imshow('window{}'.format(i), locals()['image' + str(i)])cv2.waitKey(1)finally:locals()['pipeline' + str(i)].stop()if __name__ == '__main__':YoloTest().dontla_evaluate_detect()20191202-1
增加了攝像頭初始化機制(hardware_reset)、設備檢測機制、程序終止機制等。
# -*- coding: utf-8 -*- """ @File : test-multicam_multithreading.py @Time : 2019/11/30 15:18 @Author : Dontla @Email : sxana@qq.com @Software: PyCharm """import cv2 import numpy as np import tensorflow as tf import core.utils as utils from core.config import cfg from core.yolov3 import YOLOV3 import pyrealsense2 as rs import time import sysclass YoloTest(object):def __init__(self):# D·C 191111:__C.TEST.INPUT_SIZE = 544self.input_size = cfg.TEST.INPUT_SIZEself.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE# Dontla 191106注釋:初始化class.names文件的字典信息屬性self.classes = utils.read_class_names(cfg.YOLO.CLASSES)# D·C 191115:類數量屬性self.num_classes = len(self.classes)self.anchors = np.array(utils.get_anchors(cfg.YOLO.ANCHORS))# D·C 191111:__C.TEST.SCORE_THRESHOLD = 0.3self.score_threshold = cfg.TEST.SCORE_THRESHOLD# D·C 191120:__C.TEST.IOU_THRESHOLD = 0.45self.iou_threshold = cfg.TEST.IOU_THRESHOLDself.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY# D·C 191120:__C.TEST.ANNOT_PATH = "./data/dataset/Dontla/20191023_Artificial_Flower/test.txt"self.annotation_path = cfg.TEST.ANNOT_PATH# D·C 191120:__C.TEST.WEIGHT_FILE = "./checkpoint/f_g_c_weights_files/yolov3_test_loss=15.8845.ckpt-47"self.weight_file = cfg.TEST.WEIGHT_FILE# D·C 191115:可寫標記(bool類型值)self.write_image = cfg.TEST.WRITE_IMAGE# D·C 191115:__C.TEST.WRITE_IMAGE_PATH = "./data/detection/"(識別圖片畫框并標注文本后寫入的圖片路徑)self.write_image_path = cfg.TEST.WRITE_IMAGE_PATH# D·C 191116:TEST.SHOW_LABEL設置為Trueself.show_label = cfg.TEST.SHOW_LABEL# D·C 191120:創建命名空間“input”with tf.name_scope('input'):# D·C 191120:建立變量(創建占位符開辟內存空間)self.input_data = tf.placeholder(dtype=tf.float32, name='input_data')self.trainable = tf.placeholder(dtype=tf.bool, name='trainable')model = YOLOV3(self.input_data, self.trainable)self.pred_sbbox, self.pred_mbbox, self.pred_lbbox = model.pred_sbbox, model.pred_mbbox, model.pred_lbbox# D·C 191120:創建命名空間“指數滑動平均”with tf.name_scope('ema'):ema_obj = tf.train.ExponentialMovingAverage(self.moving_ave_decay)# D·C 191120:在允許軟設備放置的會話中啟動圖形并記錄放置決策。(不懂啥意思。。。)allow_soft_placement=True表示允許tf自動選擇可用的GPU和CPUself.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))# D·C 191120:variables_to_restore()用于加載模型計算滑動平均值時將影子變量直接映射到變量本身self.saver = tf.train.Saver(ema_obj.variables_to_restore())# D·C 191120:用于下次訓練時恢復模型self.saver.restore(self.sess, self.weight_file)def predict(self, image):# D·C 191107:復制一份圖片的鏡像,避免對圖片直接操作改變圖片的內在屬性org_image = np.copy(image)# D·C 191107:獲取圖片尺寸org_h, org_w, _ = org_image.shape# D·C 191108:該函數將源圖結合input_size,將其轉換成預投喂的方形圖像(作者默認544×544,中間為縮小尺寸的源圖,上下空區域為灰圖):image_data = utils.image_preprocess(image, [self.input_size, self.input_size])# D·C 191108:打印維度看看:# print(image_data.shape)# (544, 544, 3)# D·C 191108:創建新軸,不懂要創建新軸干嘛?image_data = image_data[np.newaxis, ...]# D·C 191108:打印維度看看:# print(image_data.shape)# (1, 544, 544, 3)# D·C 191110:三個box可能存放了預測框圖(可能是N多的框,有用的沒用的重疊的都在里面)的信息(但是打印出來的值完全看不懂啊喂?)pred_sbbox, pred_mbbox, pred_lbbox = self.sess.run([self.pred_sbbox, self.pred_mbbox, self.pred_lbbox],feed_dict={self.input_data: image_data,self.trainable: False})# D·C 191110:打印三個box的類型、形狀和值看看:# print(type(pred_sbbox))# print(type(pred_mbbox))# print(type(pred_lbbox))# 都是<class 'numpy.ndarray'># print(pred_sbbox.shape)# print(pred_mbbox.shape)# print(pred_lbbox.shape)# (1, 68, 68, 3, 6)# (1, 34, 34, 3, 6)# (1, 17, 17, 3, 6)# print(pred_sbbox)# print(pred_mbbox)# print(pred_lbbox)# D·C 191110:(-1,6)表示不知道有多少行,反正你給我整成6列,然后concatenate又把它們仨給疊起來,最終得到無數個6列數組(后面self.num_classes)個數存放的貌似是這個框屬于類的概率)pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + self.num_classes)),np.reshape(pred_mbbox, (-1, 5 + self.num_classes)),np.reshape(pred_lbbox, (-1, 5 + self.num_classes))], axis=0)# D·C 191111:打印pred_bbox和它的維度看看:# print(pred_bbox)# print(pred_bbox.shape)# (18207, 6)# D·C 191111:猜測是第一道過濾,過濾掉score_threshold以下的圖片,過濾完之后少了好多:# D·C 191115:bboxes維度為[n,6],前四列是坐標,第五列是得分,第六列是對應類下標bboxes = utils.postprocess_boxes(pred_bbox, (org_h, org_w), self.input_size, self.score_threshold)# D·C 191111:猜測是第二道過濾,過濾掉iou_threshold以下的圖片:bboxes = utils.nms(bboxes, self.iou_threshold)return bboxesdef dontla_evaluate_detect(self):ctx = rs.context()# devices = ctx.query_devices()# 攝像頭個數cam_num = 6# 循環reset攝像頭# hardware_reset()后是不是應該延遲一段時間?不延遲就會報錯for dev in ctx.query_devices():dev.hardware_reset()while len(ctx.query_devices()) != cam_num:time.sleep(0.5)print('攝像頭{}初始化成功'.format(dev.get_info(rs.camera_info.serial_number)))# D·C 191202:猜測攝像頭重置后的若干秒內,攝像頭是不穩定的,這跟訪問ctx.query_devices()時設備丟失是否是同一回事,有待考證!# D·C 191202:除此之外,我還懷疑,訪問ctx.query_devices()會對設備連接造成影響,在這里,我們盡量減少訪問頻率。如果沒有影響,那還是要等設備穩定再運行。# 設置睡眠延時倒計時,防止重置失敗# sleep_time = 0# for i in range(sleep_time):# print('倒計時{}'.format(sleep_time - i))# time.sleep(1)# 循環驗證攝像頭個數是否為6,如果是則繼續向下,并獲取實際連接的攝像頭個數。否則持續驗證(驗證次數超過限制則退出程序)。devices = ctx.query_devices()connected_cam_num = len(devices)veri_times = 10while connected_cam_num != cam_num:veri_times -= 1if veri_times == -1:sys.exit()devices = ctx.query_devices()connected_cam_num = len(devices)print('攝像頭個數:{}'.format(connected_cam_num))# 打印攝像頭序列號和接口號并創建需要顯示在窗口上的備注信息字符串列表(窗口名)cam_id = 0serial_list = []for i in devices:cam_id += 1serial_list.append('camera{}; serials number {}; usb port {}'.format(cam_id, i.get_info(rs.camera_info.serial_number),i.get_info(rs.camera_info.usb_type_descriptor)))print('serial number {}:{};usb port:{}'.format(cam_id, i.get_info(rs.camera_info.serial_number),i.get_info(rs.camera_info.usb_type_descriptor)))# 配置各個攝像頭的基本對象for i in range(connected_cam_num):locals()['pipeline' + str(i)] = rs.pipeline()locals()['config' + str(i)] = rs.config()locals()['serial' + str(i)] = ctx.devices[i].get_info(rs.camera_info.serial_number)locals()['config' + str(i)].enable_device(locals()['serial' + str(i)])locals()['config' + str(i)].enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)locals()['config' + str(i)].enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)locals()['pipeline' + str(i)].start(locals()['config' + str(i)])# 創建對齊對象(深度對齊顏色)locals()['align' + str(i)] = rs.align(rs.stream.color)# 運行流并進行識別try:# 設置break標志,方便按下按鈕跳出循環退出窗口break2 = Falsewhile True:for i in range(connected_cam_num):locals()['frames' + str(i)] = locals()['pipeline' + str(i)].wait_for_frames()# 獲取對齊幀集locals()['aligned_frames' + str(i)] = locals()['align' + str(i)].process(locals()['frames' + str(i)])# 獲取對齊后的深度幀和彩色幀locals()['aligned_depth_frame' + str(i)] = locals()['aligned_frames' + str(i)].get_depth_frame()locals()['color_frame' + str(i)] = locals()['aligned_frames' + str(i)].get_color_frame()if not locals()['aligned_depth_frame' + str(i)] or not locals()['color_frame' + str(i)]:continue# 獲取顏色幀內參locals()['color_profile' + str(i)] = locals()['color_frame' + str(i)].get_profile()locals()['cvsprofile' + str(i)] = rs.video_stream_profile(locals()['color_profile' + str(i)])locals()['color_intrin' + str(i)] = locals()['cvsprofile' + str(i)].get_intrinsics()locals()['color_intrin_part' + str(i)] = [locals()['color_intrin' + str(i)].ppx,locals()['color_intrin' + str(i)].ppy,locals()['color_intrin' + str(i)].fx,locals()['color_intrin' + str(i)].fy]locals()['color_image' + str(i)] = np.asanyarray(locals()['color_frame' + str(i)].get_data())# D·C 191121:顯示幀看看# cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)# cv2.imshow('RealSense', color_frame)# cv2.waitKey(1)locals()['bboxes_pr' + str(i)] = self.predict(locals()['color_image' + str(i)])locals()['image' + str(i)] = utils.draw_bbox(locals()['color_image' + str(i)],locals()['bboxes_pr' + str(i)],locals()['aligned_depth_frame' + str(i)],locals()['color_intrin_part' + str(i)],show_label=self.show_label)# cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)# cv2.imshow('window{}'.format(i), locals()['image' + str(i)])cv2.imshow('{}'.format(serial_list[i]), locals()['image' + str(i)])key = cv2.waitKey(1)# 如果按下ESC,則跳出循環if key == 27:# 貌似直接用return也行# returnbreak2 = Truebreakif break2 == True:breakfinally:# 大概覺得先關閉窗口再停止流比較靠譜# 銷毀所有窗口cv2.destroyAllWindows()print('已關閉所有窗口!')# 停止所有流locals()['pipeline' + str(i)].stop()print('正在停止所有流,請等待數秒至程序穩定結束!')if __name__ == '__main__':YoloTest().dontla_evaluate_detect()print('程序已結束!')20191202-2
增加了連續驗證機制,優化了部分結構,并且處理了一部分代碼
# -*- coding: utf-8 -*- """ @File : test-multicam_multithreading.py @Time : 2019/11/30 15:18 @Author : Dontla @Email : sxana@qq.com @Software: PyCharm """import cv2 import numpy as np import tensorflow as tf import core.utils as utils from core.config import cfg from core.yolov3 import YOLOV3 import pyrealsense2 as rs import time import sysclass YoloTest(object):def __init__(self):# D·C 191111:__C.TEST.INPUT_SIZE = 544self.input_size = cfg.TEST.INPUT_SIZEself.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE# Dontla 191106注釋:初始化class.names文件的字典信息屬性self.classes = utils.read_class_names(cfg.YOLO.CLASSES)# D·C 191115:類數量屬性self.num_classes = len(self.classes)self.anchors = np.array(utils.get_anchors(cfg.YOLO.ANCHORS))# D·C 191111:__C.TEST.SCORE_THRESHOLD = 0.3self.score_threshold = cfg.TEST.SCORE_THRESHOLD# D·C 191120:__C.TEST.IOU_THRESHOLD = 0.45self.iou_threshold = cfg.TEST.IOU_THRESHOLDself.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY# D·C 191120:__C.TEST.ANNOT_PATH = "./data/dataset/Dontla/20191023_Artificial_Flower/test.txt"self.annotation_path = cfg.TEST.ANNOT_PATH# D·C 191120:__C.TEST.WEIGHT_FILE = "./checkpoint/f_g_c_weights_files/yolov3_test_loss=15.8845.ckpt-47"self.weight_file = cfg.TEST.WEIGHT_FILE# D·C 191115:可寫標記(bool類型值)self.write_image = cfg.TEST.WRITE_IMAGE# D·C 191115:__C.TEST.WRITE_IMAGE_PATH = "./data/detection/"(識別圖片畫框并標注文本后寫入的圖片路徑)self.write_image_path = cfg.TEST.WRITE_IMAGE_PATH# D·C 191116:TEST.SHOW_LABEL設置為Trueself.show_label = cfg.TEST.SHOW_LABEL# D·C 191120:創建命名空間“input”with tf.name_scope('input'):# D·C 191120:建立變量(創建占位符開辟內存空間)self.input_data = tf.placeholder(dtype=tf.float32, name='input_data')self.trainable = tf.placeholder(dtype=tf.bool, name='trainable')model = YOLOV3(self.input_data, self.trainable)self.pred_sbbox, self.pred_mbbox, self.pred_lbbox = model.pred_sbbox, model.pred_mbbox, model.pred_lbbox# D·C 191120:創建命名空間“指數滑動平均”with tf.name_scope('ema'):ema_obj = tf.train.ExponentialMovingAverage(self.moving_ave_decay)# D·C 191120:在允許軟設備放置的會話中啟動圖形并記錄放置決策。(不懂啥意思。。。)allow_soft_placement=True表示允許tf自動選擇可用的GPU和CPUself.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))# D·C 191120:variables_to_restore()用于加載模型計算滑動平均值時將影子變量直接映射到變量本身self.saver = tf.train.Saver(ema_obj.variables_to_restore())# D·C 191120:用于下次訓練時恢復模型self.saver.restore(self.sess, self.weight_file)def predict(self, image):# D·C 191107:復制一份圖片的鏡像,避免對圖片直接操作改變圖片的內在屬性org_image = np.copy(image)# D·C 191107:獲取圖片尺寸org_h, org_w, _ = org_image.shape# D·C 191108:該函數將源圖結合input_size,將其轉換成預投喂的方形圖像(作者默認544×544,中間為縮小尺寸的源圖,上下空區域為灰圖):image_data = utils.image_preprocess(image, [self.input_size, self.input_size])# D·C 191108:打印維度看看:# print(image_data.shape)# (544, 544, 3)# D·C 191108:創建新軸,不懂要創建新軸干嘛?image_data = image_data[np.newaxis, ...]# D·C 191108:打印維度看看:# print(image_data.shape)# (1, 544, 544, 3)# D·C 191110:三個box可能存放了預測框圖(可能是N多的框,有用的沒用的重疊的都在里面)的信息(但是打印出來的值完全看不懂啊喂?)pred_sbbox, pred_mbbox, pred_lbbox = self.sess.run([self.pred_sbbox, self.pred_mbbox, self.pred_lbbox],feed_dict={self.input_data: image_data,self.trainable: False})# D·C 191110:打印三個box的類型、形狀和值看看:# print(type(pred_sbbox))# print(type(pred_mbbox))# print(type(pred_lbbox))# 都是<class 'numpy.ndarray'># print(pred_sbbox.shape)# print(pred_mbbox.shape)# print(pred_lbbox.shape)# (1, 68, 68, 3, 6)# (1, 34, 34, 3, 6)# (1, 17, 17, 3, 6)# print(pred_sbbox)# print(pred_mbbox)# print(pred_lbbox)# D·C 191110:(-1,6)表示不知道有多少行,反正你給我整成6列,然后concatenate又把它們仨給疊起來,最終得到無數個6列數組(后面self.num_classes)個數存放的貌似是這個框屬于類的概率)pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + self.num_classes)),np.reshape(pred_mbbox, (-1, 5 + self.num_classes)),np.reshape(pred_lbbox, (-1, 5 + self.num_classes))], axis=0)# D·C 191111:打印pred_bbox和它的維度看看:# print(pred_bbox)# print(pred_bbox.shape)# (18207, 6)# D·C 191111:猜測是第一道過濾,過濾掉score_threshold以下的圖片,過濾完之后少了好多:# D·C 191115:bboxes維度為[n,6],前四列是坐標,第五列是得分,第六列是對應類下標bboxes = utils.postprocess_boxes(pred_bbox, (org_h, org_w), self.input_size, self.score_threshold)# D·C 191111:猜測是第二道過濾,過濾掉iou_threshold以下的圖片:bboxes = utils.nms(bboxes, self.iou_threshold)return bboxesdef dontla_evaluate_detect(self):# 攝像頭個數(在這里設置所需使用攝像頭的總個數)cam_num = 6ctx = rs.context()# 連續驗證機制# D·C 1911202:創建最大驗證次數max_veri_times;創建連續穩定值continuous_stable_value,用于判斷設備重置后是否處于穩定狀態max_veri_times = 100continuous_stable_value = 10print('\n', end='')print('開始連續驗證,連續驗證穩定值:{},最大驗證次數:{}:'.format(continuous_stable_value, max_veri_times))continuous_value = 0veri_times = 0while True:devices = ctx.query_devices()connected_cam_num = len(devices)if connected_cam_num == cam_num:continuous_value += 1if continuous_value == continuous_stable_value:breakelse:continuous_value = 0veri_times += 1if veri_times == max_veri_times:print("檢測超時,請檢查攝像頭連接!")sys.exit()print('攝像頭個數:{}'.format(connected_cam_num))# 循環reset攝像頭# hardware_reset()后是不是應該延遲一段時間?不延遲就會報錯print('\n', end='')print('開始初始化攝像頭:')for dev in ctx.query_devices():dev.hardware_reset()while len(ctx.query_devices()) != cam_num:time.sleep(0.5)print('攝像頭{}初始化成功'.format(dev.get_info(rs.camera_info.serial_number)))# D·C 191202:猜測攝像頭重置后的若干秒內,攝像頭是不穩定的,這跟訪問ctx.query_devices()時設備丟失是否是同一回事,有待考證!# D·C 191202:除此之外,我還懷疑,訪問ctx.query_devices()會對設備連接造成影響,在這里,我們盡量減少訪問頻率。如果沒有影響,那還是要等設備穩定再運行。# 連續驗證機制# D·C 1911202:創建最大驗證次數max_veri_times;創建連續穩定值continuous_stable_value,用于判斷設備重置后是否處于穩定狀態print('\n', end='')print('開始連續驗證,連續驗證穩定值:{},最大驗證次數:{}:'.format(continuous_stable_value, max_veri_times))continuous_value = 0veri_times = 0while True:devices = ctx.query_devices()connected_cam_num = len(devices)if connected_cam_num == cam_num:continuous_value += 1if continuous_value == continuous_stable_value:breakelse:continuous_value = 0veri_times += 1if veri_times == max_veri_times:print("檢測超時,請檢查攝像頭連接!")sys.exit()print('攝像頭個數:{}'.format(connected_cam_num))# 打印攝像頭序列號和接口號并創建需要顯示在窗口上的備注信息字符串列表(窗口名)print('\n', end='')cam_id = 0serial_list = []for i in devices:cam_id += 1serial_list.append('camera{}; serials number {}; usb port {}'.format(cam_id, i.get_info(rs.camera_info.serial_number),i.get_info(rs.camera_info.usb_type_descriptor)))print('serial number {}:{};usb port:{}'.format(cam_id, i.get_info(rs.camera_info.serial_number),i.get_info(rs.camera_info.usb_type_descriptor)))# 配置各個攝像頭的基本對象for i in range(connected_cam_num):# D·C 191203:括號里是否有必要加ctx,加了沒加好像沒多大區別,但不加它又會提示黃色locals()['pipeline' + str(i)] = rs.pipeline(ctx)locals()['config' + str(i)] = rs.config()locals()['serial' + str(i)] = ctx.devices[i].get_info(rs.camera_info.serial_number)locals()['config' + str(i)].enable_device(locals()['serial' + str(i)])locals()['config' + str(i)].enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)locals()['config' + str(i)].enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)locals()['pipeline' + str(i)].start(locals()['config' + str(i)])# 創建對齊對象(深度對齊顏色)locals()['align' + str(i)] = rs.align(rs.stream.color)# 運行流并進行識別print('\n', end='')print('開始識別:')try:# 設置break標志,方便按下按鈕跳出循環退出窗口break2 = Falsewhile True:for i in range(connected_cam_num):locals()['frames' + str(i)] = locals()['pipeline' + str(i)].wait_for_frames()# 獲取對齊幀集locals()['aligned_frames' + str(i)] = locals()['align' + str(i)].process(locals()['frames' + str(i)])# 獲取對齊后的深度幀和彩色幀locals()['aligned_depth_frame' + str(i)] = locals()['aligned_frames' + str(i)].get_depth_frame()locals()['color_frame' + str(i)] = locals()['aligned_frames' + str(i)].get_color_frame()if not locals()['aligned_depth_frame' + str(i)] or not locals()['color_frame' + str(i)]:continue# 獲取顏色幀內參locals()['color_profile' + str(i)] = locals()['color_frame' + str(i)].get_profile()locals()['cvsprofile' + str(i)] = rs.video_stream_profile(locals()['color_profile' + str(i)])locals()['color_intrin' + str(i)] = locals()['cvsprofile' + str(i)].get_intrinsics()locals()['color_intrin_part' + str(i)] = [locals()['color_intrin' + str(i)].ppx,locals()['color_intrin' + str(i)].ppy,locals()['color_intrin' + str(i)].fx,locals()['color_intrin' + str(i)].fy]locals()['color_image' + str(i)] = np.asanyarray(locals()['color_frame' + str(i)].get_data())locals()['bboxes_pr' + str(i)] = self.predict(locals()['color_image' + str(i)])locals()['image' + str(i)] = utils.draw_bbox(locals()['color_image' + str(i)],locals()['bboxes_pr' + str(i)],locals()['aligned_depth_frame' + str(i)],locals()['color_intrin_part' + str(i)],show_label=self.show_label)# D·C 191202:本想創建固定比例的大小可調的窗口,發現無法使用,opencv bug?# cv2.namedWindow('{}'.format(serial_list[i]),# flags=cv2.WINDOW_NORMAL | cv2.WINDOW_FREERATIO | cv2.WINDOW_GUI_EXPANDED)cv2.imshow('{}'.format(serial_list[i]), locals()['image' + str(i)])key = cv2.waitKey(1)# 如果按下ESC,則跳出循環if key == 27:# 貌似直接用return也行# returnbreak2 = Truebreakif break2:breakfinally:# 大概覺得先關閉窗口再停止流比較靠譜# 銷毀所有窗口cv2.destroyAllWindows()print('\n', end='')print('已關閉所有窗口!')# 停止所有流for i in range(connected_cam_num):locals()['pipeline' + str(i)].stop()print('正在停止所有流,請等待數秒至程序穩定結束!')if __name__ == '__main__':YoloTest().dontla_evaluate_detect()print('程序已結束!')總結
以上是生活随笔為你收集整理的yunyang tensorflow-yolov3 Intel Realsense D435 (并发)使用locals()函数批量配置摄像头运行识别程序并画框(代码记录)(代码示例)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: python 两个内置函数——local
- 下一篇: Pycharm 项目文件名变红色以及co