浅谈迷宫搜索类的双向bfs问题(例题解析)
文章目錄
- 前言
- bfs類問題
- 雙向bfs
- 例題實戰
前言
文章若有疏忽還請指正,更多精彩還請關注公眾號:bigsai
在搜索問題中,以迷宮問題最具有代表性,無論是八皇后的回溯問題,還是dfs找出口,bfs找最短次數等等題目的問題。在我們剛開始ac的時候、可能有著很多滿足感!感覺是個迷宮問題咱么都可以給他這么搜出來 !!
然而,當數據達到一定程度,我們使用簡單的方法肯定會爆炸的,****。就可能需要一些特殊的巧妙方法處理,比如各種剪枝、優先隊列、A*、dfs套bfs,又或者利用一些非常厲害的數學方法比如康托展開(逆展開)等等。而今天,我們談談雙向bfs。
bfs類問題
bfs又稱廣度優先搜索
- 估計大部分人第一次接觸bfs的時候是在學習數據結構的二叉樹的層序遍歷!借助一個隊列一層一層遍歷。
- 第二次估計就是在學習圖論的時候,給你一個圖,讓你寫出一個bfs遍歷的順序。
此后再無bfs…
而很多筆試面試還是其他機試其實對bfs的要求遠遠不止那么低的,需要能夠處理一些小問題、寫出對應代碼。而事bfs可以處理很多問題,很多dfs搜索能夠解決的問題bfs也能解決很多(相反也成立),并且很多跟狀態有些關系的用bfs更好控制,因為bfs借助的是一個隊列實現,隊列中儲存節點就可以保存一些節點的狀態。
不過bfs并不是萬能的,具體問題要看迷宮的大小的,迷宮長寬沒增加一個數,那么這個數量級增加是非常大的,因為搜索次數大概和邊長的指數級別有關系。當然這里不詳細介紹bfs了,大家可以看以前的一篇文章。數據結構與算法—圖論之dfs、bfs(深度優先搜索、寬度優先搜索)。
雙向bfs
什么樣的情況可以使用雙向bfs來優化呢?其實雙向bfs的主要思想是問題的拆分吧,比如在一個迷宮中可以往下往右行走,問你有多少種方式從左上到右下。
- 正常情況下,我們就是搜索遍歷,如果迷宮邊長為n,那么這個復雜度大概是2n級別.
- 但是實際上我們可以將迷宮拆分一下,比如根據對角線(比較多),將迷宮一分為二。其實你的結果肯定必然經過對角線的這些點對吧!我們只要分別計算出各個對角線各個點的次數然后相加就可以了!
- 怎么算? 就是從(0,0)到中間這個點mid的總次數為n1,然后這個mid到(n,n)點的總次數為n2,然后根據排列組合總次數就是n1*n2(n1和n2正常差不多大)這樣就可以通過乘法減少加法的運算次數啦!
- 簡單的說,從數據次數來看如果直接搜索全圖經過下圖的那個點的次數為n1*n2次,如果分成兩個部分相乘那就是n1+n2次。兩者差距如果n1,n2=1000左右,那么這么一次差距是平方(根號)級別的。從搜索圖形來看其實這么一次搜索是本來一個n*n大小的搜索轉變成n次(每次大概是(n/2)*(n/2)大小的迷宮搜索兩次)。也就是如果18*18的迷宮如果使用直接搜索,那么大概2^18次方量級,而如果采用雙向bfs,那么就是2^9這個量級。
例題實戰
題目鏈接:http://oj.hzjingma.com/contest/problem?id=20&pid=8#problem-anchor
分析:對于題目的要求還是很容易理解的,就是找到所有的路徑種類,再判斷其中是對稱路徑的有幾個輸出即可!
對于一個普通思考是這樣的,首先是進行dfs,然后動態維護一個字符串,每次跑到最后判斷這個路徑字符串是否滿足對稱要求,如果滿足那么就添加到容器中進行判斷。可惜很遺憾這樣是超時的,僅能通過40%的樣例。
接著用普通bfs進行嘗試,維護一個node節點,每次走的時候路徑儲存起來其實這個效率跟dfs差不多依然超時。只能通過40%數據。
接下來就開始雙向bfs進行分析!
- 既然只能右下,那么對角線的那個位置的肯定是中間的那個字符串的!它的存在不影響是否對稱的(n*n的迷宮路徑長度為n-1 + n為奇數).
- 我們判斷路徑是否對稱,只需要判斷從(1,1)到對角節點k(設為k節點)的路徑有沒有和從(n,n)到k相同的。如果有路徑相同的那么就說明這一對構成對稱路徑
- 在具體實現上,我們對每個對角線節點可以進行兩次bfs(一次左上到(1,1),一次右下到(n,n)).并且將路徑放到兩個hashset(set1,set2)中,跑完之后用遍歷其中一個hashset中的路徑,看看另一個set是否存在該路徑,如果存在就說明這個是對稱路徑放到 總的hashset(set) 中。對角線每個位置都這樣判斷完最后只需要輸出總的hashset(set)的集合大小即可!
ac代碼如下:
import java.util.ArrayDeque; import java.util.HashSet; import java.util.Queue; import java.util.Scanner; import java.util.Set;public class test2 { static class node{int x;int y;String path="";public node() {}public node(int x,int y,String team){this.x=x;this.y=y;this.path=team;}}public static void main(String[] args) {Scanner sc=new Scanner(System.in);Set<String>set=new HashSet<String>();//儲存最終結果int n=Integer.parseInt(sc.nextLine());char map[][]=new char[n][n];for(int i=0;i<n;i++){String string=sc.nextLine();map[i]=string.toCharArray();}Queue<node>q1=new ArrayDeque<node>();//左上的隊列Queue<node>q2=new ArrayDeque<node>();//右下的隊列for(int i=0;i<n;i++){q1.clear();q2.clear();Set<String>set1=new HashSet<String>();//儲存zuoshangSet<String>set2=new HashSet<String>();//儲右下q1.add(new node(i,n-1-i,""+map[i][n-1-i]));q2.add(new node(i,n-1-i,""+map[i][n-1-i]));while(!q1.isEmpty()&&!q2.isEmpty()){node team=q1.poll();node team2=q2.poll();if(team.x==n-1&&team.y==n-1)//到終點,將路徑儲存{//System.out.println(team2.path); set1.add(team.path);set2.add(team2.path);}else {if(team.x<n-1)//可以向下{q1.add(new node(team.x+1, team.y, team.path+map[team.x+1][team.y]));}if(team.y<n-1)//可以向右{q1.add(new node(team.x, team.y+1, team.path+map[team.x][team.y+1]));}if(team2.x>0)//上{q2.add(new node(team2.x-1, team2.y, team2.path+map[team2.x-1][team2.y]));}if(team2.y>0)//左{q2.add(new node(team2.x, team2.y-1, team2.path+map[team2.x][team2.y-1]));}}}for(String va:set1){if(set2.contains(va)){set.add(va);}}}System.out.println(set.size()); } }
總結
以上是生活随笔為你收集整理的浅谈迷宫搜索类的双向bfs问题(例题解析)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 剑指offer(60-67题)详解
- 下一篇: 常见设计模式—单例模式(Singleto