决策树(Decision Tree)和随机森林
1. 決策樹
1.1 概念
? ? ? ? 決策樹是一種樹形結(jié)構(gòu),為人們提供決策依據(jù),決策樹可以用來回答yes和no問題,它通過樹形結(jié)構(gòu)將各種情況組合都表示出來,每個分支表示一次選擇(選擇yes還是no),直到所有選擇都進行完畢,最終給出正確答案。決策樹是一種貪心算法,它要在給定時間內(nèi)做出最佳選擇,但 并不關(guān)心能否達到全局最優(yōu) 。
? ? ? ? ? ?
?
? ? ? ?決策樹(decision tree)是一個樹結(jié)構(gòu)(可以是二叉樹或非二叉樹)。在實際構(gòu)造決策樹時,通常要進行剪枝,這是為了處理由于數(shù)據(jù)中的噪聲和離群點導致的過分擬合問題。剪枝有兩種:
先剪枝——在構(gòu)造過程中,當某個節(jié)點滿足剪枝條件,則直接停止此分支的構(gòu)造。
后剪枝——先構(gòu)造完成完整的決策樹,再通過某些條件遍歷樹進行剪枝。
1.2 劃分準則
? ? ? ?決策樹學習的關(guān)鍵:如何選擇最優(yōu)劃分屬性
? ? ? ?劃分數(shù)據(jù)集的大原則是:將無序的數(shù)據(jù)變得更加有序
? ? ? ?劃分數(shù)據(jù)集,構(gòu)建決策樹時將對每個特征劃分數(shù)據(jù)集的結(jié)果計算一次信息增益/基尼指數(shù)/增益率,然后判斷按照哪個特征劃分數(shù)據(jù)集是最好的劃分方式。
(1)信息增益
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??
? ? ? 信息增益越大,則意味著使用屬性 α 來進行劃分所獲得的"純度提升"越大。信息增益準則對可取值數(shù)目較多的屬性有所偏好。
(2)增益率
? ? ? ? ??
? ? ? 屬性 α 的可能取值數(shù)目越多(即 V 越大),則 IV(α) 的值通常會越大,增益率越小。增益率準則對可取值數(shù)目較少的屬性有所偏好。
(3)基尼指數(shù)
? ? ?基尼值:
? ? ? ? ? ? ? ? ? ? ? ? ??? ? ? ? ? ? ? ? ?
? ? ? 基尼指數(shù):
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??
? ? ? ?Gini(D) 反映了從數(shù)據(jù)集 D 中隨機抽取兩個樣本,其類別標記不一致的概率。 因此, Gini(D) 越小,兩個樣本的類別越一致,則數(shù)據(jù)集 D 的純度越高。?
1.3?決策樹算法
(1)ID3
? ? ? ?以信息增益為準則來選擇劃分屬性,用于劃分離散型數(shù)據(jù)集。
做法:
? ? ? ?每次選取當前最佳的特征來分割數(shù)據(jù),并按照該特征的所有可能取值來切分。一旦按某特征切分后,該特征在之后的算法執(zhí)行過程中將不會再起作用,所以有觀點認為這種切分方式過于迅速。 ? ? ? ?
缺點: ?
- 切分方式過于迅速; ?
- ?不能直接處理連續(xù)型特征。只有事先將連續(xù)型特征轉(zhuǎn)換成離散型,才能使用。這種轉(zhuǎn)換過程會破壞連續(xù)型變量的內(nèi)在性質(zhì)。 ? ? ? ?
? ? ? ? ID3算法無法直接處理數(shù)值型數(shù)據(jù),盡管我們可以通過量化的方法將數(shù)值型數(shù)據(jù)轉(zhuǎn)化為離散型數(shù)值,但是如果存在太多的特征劃分, ID3算法仍然會面臨其他問題。
(2)C4.5
? ? ? 以增益率為準則來選擇劃分屬性,核心算法ID3的改進算法。
C4.5比ID3改進的地方: ? ? ? ?
(3)CART
? ? ? CART決策樹(分類回歸決策樹):使用"基尼指數(shù)" 來選擇劃分屬性。
? ? ? CART是十分著名且廣泛記載的樹構(gòu)建算法,它使用二元切分來處理連續(xù)型變量:
? ? ? 二元切分法:每次把數(shù)據(jù)集切成兩份
? ? ? 做法:如果特征值大于給定值就走左子樹, 否則就走右子樹。 ? ? ? ?
? ? ? 優(yōu)點:易于對樹構(gòu)建過程進行調(diào)整以處理連續(xù)型特征; ? 二元切分法也節(jié)省了樹的構(gòu)建時間。
1.4 代碼實現(xiàn)
- ID3選擇屬性用的是子樹的信息增益,即熵的變化值;而C4.5用的是信息增益率。一般來說率就是用來取平衡用的,比如有兩個跑步的人,一個起點是10m/s的人、其1s后為20m/s;另一個人起速是1m/s、其1s后為2m/s。如果緊緊算差值那么兩個差距就很大了,如果使用速度增加率(加速度)來衡量,2個人就是一樣了。在這里,其克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足。 ? ? ? ?
- 在樹構(gòu)造過程中進行剪枝。有些節(jié)點只掛著幾個元素,對于這種節(jié)點,干脆不考慮最好,不然很容易導致overfitting。 ? ? ?
- 對非離散數(shù)據(jù)都能處理,也就是把連續(xù)性的數(shù)據(jù)轉(zhuǎn)化為離散的值進行處理。這個其實就是一個個式,看對于連續(xù)型的值在哪里分裂好。 ? ? ? ?
- 能夠?qū)Σ煌暾麛?shù)據(jù)進行處理。這個重要也重要,其實也沒那么重要,缺失數(shù)據(jù)采用一些方法補上去就是了。
? ? ?決策樹主要是調(diào)用sklearn里面函數(shù),這個里面包含了DecisionTreeClassifier,不需要我們自己去實現(xiàn)。
import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressorif __name__ == "__main__":n = 500x = np.random.rand(n) * 8 - 3x.sort()y = np.cos(x) + np.sin(x) + np.random.randn(n) * 0.4x = x.reshape(-1, 1)reg = DecisionTreeRegressor(criterion='mse')# reg1 = RandomForestRegressor(criterion='mse')dt = reg.fit(x, y)# dt1 = reg1.fit(x, y)x_test = np.linspace(-3, 5, 100).reshape(-1, 1)y_hat = dt.predict(x_test)plt.figure(facecolor="w")plt.plot(x, y, 'ro', label="actual")plt.plot(x_test, y_hat, 'k*', label="predict")plt.legend(loc="best")plt.title(u'Decision Tree', fontsize=17)plt.tight_layout()plt.grid()plt.show()2. 隨機森林
2.1 Bagging策略
Bagging( bootstrap aggregation)的策略:從樣本集中進行有放回地選出n個樣本;在樣本的所有特征上,對這n個樣本建立分類器;重復(fù)上述兩步m次,獲得m個樣本分類器;最后將測試數(shù)據(jù)都放在這m個樣本分類器上,最終得到m個分類結(jié)果,再從這m個分類結(jié)果中決定數(shù)據(jù)屬于哪一類(多數(shù)投票制)。
Bootstrap:一種有放回的抽樣方法。
隨機森林采用了Bagging策略,且在其基礎(chǔ)上進行了一些修改,采用了兩個隨機:
隨機森林在一定程序上提高了泛化能力,而且可以并行地生成單棵樹。
2.2 代碼示例
使用決策樹和隨機森林進行手寫數(shù)字(sklearn中的digits數(shù)據(jù))的預(yù)測
from sklearn import datasets from sklearn.model_selection import cross_val_score import datetime from sklearn import tree from sklearn.ensemble import RandomForestClassifierdigits = datasets.load_digits(); X = digits.data # 特征矩陣 y = digits.target # 標簽矩陣 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3., random_state=8) # 分割訓練集和測試集estimators = {} # criterion: 分支的標準(gini/entropy) # 1.決策樹 estimators['tree'] = tree.DecisionTreeClassifier(criterion='gini',random_state=8) # 2.隨機森林 # n_estimators: 樹的數(shù)量 # bootstrap: 是否隨機有放回 # n_jobs: 可并行運行的數(shù)量 estimators['forest'] = RandomForestClassifier(n_estimators=20,criterion='gini',bootstrap=True,n_jobs=2,random_state=8) for k in estimators.keys():start_time = datetime.datetime.now()# print '----%s----' % kestimators[k] = estimators[k].fit(X_train, y_train)pred = estimators[k].predict(X_test)# print pred[:10]print("%s Score: %0.2f" % (k, estimators[k].score(X_test, y_test)))scores = cross_val_score(estimators[k], X_train, y_train,scoring='accuracy' ,cv=10)print("%s Cross Avg. Score: %0.2f (+/- %0.2f)" % (k, scores.mean(), scores.std() * 2))end_time = datetime.datetime.now()time_spend = end_time - start_timeprint("%s Time: %0.2f" % (k, time_spend.total_seconds()))未完待續(xù)。。。
總結(jié)
以上是生活随笔為你收集整理的决策树(Decision Tree)和随机森林的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 拉格朗日乘子法 KKT条件
- 下一篇: Tensorboard—使用keras结