ML之LiRLassoR:利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估
生活随笔
收集整理的這篇文章主要介紹了
ML之LiRLassoR:利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
ML之LiR&LassoR:利用boston房價數(shù)據(jù)集(PCA處理)采用線性回歸和Lasso套索回歸算法實現(xiàn)房價預測模型評估
?
?
?
目錄
利用boston房價數(shù)據(jù)集(PCA處理)采用線性回歸和Lasso套索回歸算法實現(xiàn)房價預測模型評估
設計思路
輸出結(jié)果
核心代碼
?
?
?
?
?
利用boston房價數(shù)據(jù)集(PCA處理)采用線性回歸和Lasso套索回歸算法實現(xiàn)房價預測模型評估
設計思路
更新……
?
?
?
輸出結(jié)果
Id MSSubClass MSZoning ... SaleType SaleCondition SalePrice 0 1 60 RL ... WD Normal 208500 1 2 20 RL ... WD Normal 181500 2 3 60 RL ... WD Normal 223500 3 4 70 RL ... WD Abnorml 140000 4 5 60 RL ... WD Normal 250000[5 rows x 81 columns] numeric_columns 36 ['LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold', 'SalePrice'] (1460, 36)LotFrontage LotArea OverallQual ... MoSold YrSold SalePrice 0 65.0 8450 7 ... 2 2008 208500 1 80.0 9600 6 ... 5 2007 181500 2 68.0 11250 7 ... 9 2008 223500 3 60.0 9550 7 ... 2 2006 140000 4 84.0 14260 8 ... 12 2008 250000依次統(tǒng)計每列缺失值元素個數(shù): 36 [259, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Missing_data_Per_dict_0: (33, 0.9167, {'LotArea': 0.0, 'OverallQual': 0.0, 'OverallCond': 0.0, 'YearBuilt': 0.0, 'YearRemodAdd': 0.0, 'BsmtFinSF1': 0.0, 'BsmtFinSF2': 0.0, 'BsmtUnfSF': 0.0, 'TotalBsmtSF': 0.0, '1stFlrSF': 0.0, '2ndFlrSF': 0.0, 'LowQualFinSF': 0.0, 'GrLivArea': 0.0, 'BsmtFullBath': 0.0, 'BsmtHalfBath': 0.0, 'FullBath': 0.0, 'HalfBath': 0.0, 'BedroomAbvGr': 0.0, 'KitchenAbvGr': 0.0, 'TotRmsAbvGrd': 0.0, 'Fireplaces': 0.0, 'GarageCars': 0.0, 'GarageArea': 0.0, 'WoodDeckSF': 0.0, 'OpenPorchSF': 0.0, 'EnclosedPorch': 0.0, '3SsnPorch': 0.0, 'ScreenPorch': 0.0, 'PoolArea': 0.0, 'MiscVal': 0.0, 'MoSold': 0.0, 'YrSold': 0.0, 'SalePrice': 0.0}) Missing_data_Per_dict_Not0: (3, 0.0833, {'LotFrontage': 0.177397, 'MasVnrArea': 0.005479, 'GarageYrBlt': 0.055479}) Missing_data_Per_dict_under01: (2, 0.0556, {'MasVnrArea': 0.005479, 'GarageYrBlt': 0.055479}) 依次計算每列缺失值元素占比: {'LotFrontage': 0.177397, 'MasVnrArea': 0.005479, 'GarageYrBlt': 0.055479} data_Missing_dict {'LotFrontage': 0.1773972602739726, 'LotArea': 0.0, 'OverallQual': 0.0, 'OverallCond': 0.0, 'YearBuilt': 0.0, 'YearRemodAdd': 0.0, 'MasVnrArea': 0.005479452054794521, 'BsmtFinSF1': 0.0, 'BsmtFinSF2': 0.0, 'BsmtUnfSF': 0.0, 'TotalBsmtSF': 0.0, '1stFlrSF': 0.0, '2ndFlrSF': 0.0, 'LowQualFinSF': 0.0, 'GrLivArea': 0.0, 'BsmtFullBath': 0.0, 'BsmtHalfBath': 0.0, 'FullBath': 0.0, 'HalfBath': 0.0, 'BedroomAbvGr': 0.0, 'KitchenAbvGr': 0.0, 'TotRmsAbvGrd': 0.0, 'Fireplaces': 0.0, 'GarageYrBlt': 0.05547945205479452, 'GarageCars': 0.0, 'GarageArea': 0.0, 'WoodDeckSF': 0.0, 'OpenPorchSF': 0.0, 'EnclosedPorch': 0.0, '3SsnPorch': 0.0, 'ScreenPorch': 0.0, 'PoolArea': 0.0, 'MiscVal': 0.0, 'MoSold': 0.0, 'YrSold': 0.0, 'SalePrice': 0.0} after dropna (1121, 36) <class 'numpy.ndarray'>LotFrontage LotArea OverallQual ... MiscVal MoSold YrSold 0 -0.233570 -0.205885 0.570704 ... -0.141407 -1.615345 0.153084 1 0.384834 -0.064358 -0.153825 ... -0.141407 -0.498715 -0.596291 2 -0.109889 0.138702 0.570704 ... -0.141407 0.990125 0.153084 3 -0.439705 -0.070512 0.570704 ... -0.141407 -1.615345 -1.345665 4 0.549742 0.509132 1.295234 ... -0.141407 2.106755 0.153084 ... ... ... ... ... ... ... ... 1116 -0.357251 -0.271480 -0.153825 ... -0.141407 0.617915 -0.596291 1117 0.590968 0.375605 -0.153825 ... -0.141407 -1.615345 1.651832 1118 -0.192343 -0.133030 0.570704 ... 14.947388 -0.498715 1.651832 1119 -0.109889 -0.049960 -0.878355 ... -0.141407 -0.870925 1.651832 1120 0.178699 -0.022885 -0.878355 ... -0.141407 -0.126505 0.153084[1121 rows x 35 columns] 前10個主成分解釋了數(shù)據(jù)中63.80%的變化 經(jīng)過PCA后,進行第一層主成分分析------------------------------------- [(0.16970682313415306, 'LotFrontage'), (0.1211669980146095, 'LotArea'), (0.3008665261375608, 'OverallQual'), (-0.1017783758120348, 'OverallCond'), (0.23754113423286216, 'YearBuilt'), (0.21067267847804322, 'YearRemodAdd'), (0.19125461510335365, 'MasVnrArea'), (0.14136511574315347, 'BsmtFinSF1'), (-0.013552848692716916, 'BsmtFinSF2'), (0.11439764110410199, 'BsmtUnfSF'), (0.259354275741638, 'TotalBsmtSF'), (0.2591780447881022, '1stFlrSF'), (0.11504305093601253, '2ndFlrSF'), (0.004231304806602964, 'LowQualFinSF'), (0.2877802164879641, 'GrLivArea'), (0.08317879411803167, 'BsmtFullBath'), (-0.02114280846249704, 'BsmtHalfBath'), (0.25499633884283257, 'FullBath'), (0.11080279874459822, 'HalfBath'), (0.1017767099777179, 'BedroomAbvGr'), (-0.01012145139988125, 'KitchenAbvGr'), (0.23572236584667458, 'TotRmsAbvGrd'), (0.17611466785004926, 'Fireplaces'), (0.23726651555979883, 'GarageYrBlt'), (0.2831568046802727, 'GarageCars'), (0.279827792756442, 'GarageArea'), (0.13036585867815073, 'WoodDeckSF'), (0.16664693092097654, 'OpenPorchSF'), (-0.08602539908222213, 'EnclosedPorch'), (0.010532579475601184, '3SsnPorch'), (0.02556170369869493, 'ScreenPorch'), (0.06246570190310543, 'PoolArea'), (-0.015493399959318557, 'MiscVal'), (0.028399126033275164, 'MoSold'), (-0.011129722622237775, 'YrSold')] [(0.3008665261375608, 'OverallQual'), (0.2877802164879641, 'GrLivArea'), (0.2831568046802727, 'GarageCars'), (0.279827792756442, 'GarageArea'), (0.259354275741638, 'TotalBsmtSF'), (0.2591780447881022, '1stFlrSF'), (0.25499633884283257, 'FullBath'), (0.23754113423286216, 'YearBuilt'), (0.23726651555979883, 'GarageYrBlt'), (0.23572236584667458, 'TotRmsAbvGrd'), (0.21067267847804322, 'YearRemodAdd'), (0.19125461510335365, 'MasVnrArea'), (0.17611466785004926, 'Fireplaces'), (0.16970682313415306, 'LotFrontage'), (0.16664693092097654, 'OpenPorchSF'), (0.14136511574315347, 'BsmtFinSF1'), (0.13036585867815073, 'WoodDeckSF'), (0.1211669980146095, 'LotArea'), (0.11504305093601253, '2ndFlrSF'), (0.11439764110410199, 'BsmtUnfSF'), (0.11080279874459822, 'HalfBath'), (0.1017767099777179, 'BedroomAbvGr'), (0.08317879411803167, 'BsmtFullBath'), (0.06246570190310543, 'PoolArea'), (0.028399126033275164, 'MoSold'), (0.02556170369869493, 'ScreenPorch'), (0.010532579475601184, '3SsnPorch'), (0.004231304806602964, 'LowQualFinSF'), (-0.01012145139988125, 'KitchenAbvGr'), (-0.011129722622237775, 'YrSold'), (-0.013552848692716916, 'BsmtFinSF2'), (-0.015493399959318557, 'MiscVal'), (-0.02114280846249704, 'BsmtHalfBath'), (-0.08602539908222213, 'EnclosedPorch'), (-0.1017783758120348, 'OverallCond')] 經(jīng)過PCA后,進行第二層主成分分析------------------------------------- [(0.037140668512444255, 'LotFrontage'), (0.005762269875424171, 'LotArea'), (-0.02265545744738413, 'OverallQual'), (0.06797580738610676, 'OverallCond'), (-0.22034458100877843, 'YearBuilt'), (-0.11769773674122082, 'YearRemodAdd'), (-0.02330741979867707, 'MasVnrArea'), (-0.26830830083400875, 'BsmtFinSF1'), (-0.06776753790369254, 'BsmtFinSF2'), (0.10349973537774373, 'BsmtUnfSF'), (-0.2014230745261159, 'TotalBsmtSF'), (-0.14501101153644946, '1stFlrSF'), (0.43960496790131565, '2ndFlrSF'), (0.11932040000909688, 'LowQualFinSF'), (0.2706724094458561, 'GrLivArea'), (-0.2741406761479087, 'BsmtFullBath'), (-0.001880261013674545, 'BsmtHalfBath'), (0.12608264523927462, 'FullBath'), (0.23358978781221817, 'HalfBath'), (0.3864399252645517, 'BedroomAbvGr'), (0.12179545892853964, 'KitchenAbvGr'), (0.3371810668951179, 'TotRmsAbvGrd'), (0.06581774146310777, 'Fireplaces'), (-0.1834261688794573, 'GarageYrBlt'), (-0.04640661259007604, 'GarageCars'), (-0.08613653500685643, 'GarageArea'), (-0.047991361825782064, 'WoodDeckSF'), (0.03130768246434415, 'OpenPorchSF'), (0.13376424222015906, 'EnclosedPorch'), (-0.02564456693744644, '3SsnPorch'), (0.04211790221668751, 'ScreenPorch'), (0.03032238859229474, 'PoolArea'), (0.04968459727862472, 'MiscVal'), (0.02754218343139985, 'MoSold'), (-0.04555808126996797, 'YrSold')] [(0.43960496790131565, '2ndFlrSF'), (0.3864399252645517, 'BedroomAbvGr'), (0.3371810668951179, 'TotRmsAbvGrd'), (0.2706724094458561, 'GrLivArea'), (0.23358978781221817, 'HalfBath'), (0.13376424222015906, 'EnclosedPorch'), (0.12608264523927462, 'FullBath'), (0.12179545892853964, 'KitchenAbvGr'), (0.11932040000909688, 'LowQualFinSF'), (0.10349973537774373, 'BsmtUnfSF'), (0.06797580738610676, 'OverallCond'), (0.06581774146310777, 'Fireplaces'), (0.04968459727862472, 'MiscVal'), (0.04211790221668751, 'ScreenPorch'), (0.037140668512444255, 'LotFrontage'), (0.03130768246434415, 'OpenPorchSF'), (0.03032238859229474, 'PoolArea'), (0.02754218343139985, 'MoSold'), (0.005762269875424171, 'LotArea'), (-0.001880261013674545, 'BsmtHalfBath'), (-0.02265545744738413, 'OverallQual'), (-0.02330741979867707, 'MasVnrArea'), (-0.02564456693744644, '3SsnPorch'), (-0.04555808126996797, 'YrSold'), (-0.04640661259007604, 'GarageCars'), (-0.047991361825782064, 'WoodDeckSF'), (-0.06776753790369254, 'BsmtFinSF2'), (-0.08613653500685643, 'GarageArea'), (-0.11769773674122082, 'YearRemodAdd'), (-0.14501101153644946, '1stFlrSF'), (-0.1834261688794573, 'GarageYrBlt'), (-0.2014230745261159, 'TotalBsmtSF'), (-0.22034458100877843, 'YearBuilt'), (-0.26830830083400875, 'BsmtFinSF1'), (-0.2741406761479087, 'BsmtFullBath')] 不進行PCA的線性回歸的MSE是1644140595.6636596 前10個PCA主成分進行線性回歸的MSE是1836601962.4751632 [1e-10, 1e-09, 1e-08, 1e-07, 1e-06, 1e-05, 0.0001, 0.001, 0.01, 0.1] [1642818822.3530025, 1642818822.3529558, 1642818822.3524888, 1642818822.3471866, 1642818822.3005185, 1642818821.7415214, 1642818817.1179569, 1642818756.7038794, 1642818283.0732899, 1642813588.5752773] [1e-10, 1e-09, 1e-08, 1e-07, 1e-06, 1e-05, 0.0001, 0.001, 0.01, 0.1] [1836601962.4751682, 1836601962.4752123, 1836601962.475657, 1836601962.480097, 1836601962.5245085, 1836601962.9652405, 1836601967.4063494, 1836602011.8174434, 1836602455.9288514, 1836606882.1034737]?
?
核心代碼
PCA class TruncatedSVD Found at: sklearn.decomposition._truncated_svdclass TruncatedSVD(TransformerMixin, BaseEstimator):"""Dimensionality reduction using truncated SVD (aka LSA).This transformer performs linear dimensionality reduction by means oftruncated singular value decomposition (SVD). Contrary to PCA, thisestimator does not center the data before computing the singular valuedecomposition. This means it can work with sparse matricesefficiently.In particular, truncated SVD works on term count/tf-idf matrices asreturned by the vectorizers in :mod:`sklearn.feature_extraction.text`. Inthat context, it is known as latent semantic analysis (LSA).This estimator supports two algorithms: a fast randomized SVD solver, anda "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or`X.T * X`, whichever is more efficient.LinearRegression class LinearRegression Found at: sklearn.linear_model._baseclass LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):"""Ordinary least squares Linear Regression.LinearRegression fits a linear model with coefficients w = (w1, ..., wp)to minimize the residual sum of squares between the observed targets inthe dataset, and the targets predicted by the linear approximation.Lasso class Lasso Found at: sklearn.linear_model._coordinate_descent class Lasso(ElasticNet):"""Linear Model trained with L1 prior as regularizer (aka the Lasso)The optimization objective for Lasso is::(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1Technically the Lasso model is optimizing the same objective function asthe Elastic Net with ``l1_ratio=1.0`` (no L2 penalty).Read more in the :ref:`User Guide <lasso>`.?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
總結(jié)
以上是生活随笔為你收集整理的ML之LiRLassoR:利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ML之LiRLasso:基于datase
- 下一篇: ML之LassoRRidgeR:基于da