[code] em
EM_init 中調用多次kmeans, 取得其中最佳的聚類結果, 并賦值:
??? m_num_clusters = bestK.numberOfClusters();
??? m_weights = new double[inst.numInstances()][m_num_clusters];
??? m_model = new DiscreteEstimator[m_num_clusters][m_num_attribs];
??? m_modelNormal = new double[m_num_clusters][m_num_attribs][3];
??? m_priors = new double[m_num_clusters];
并得到最佳kmeans聚類的m_num_clusters個質心, 利用最佳kmeans的聚類結果初始化
1) 對離散屬性使用m_model[numInstance][numCluster];
2) 對數值屬性使用m_modelNormal[numInstance][numCluster][3], 其中第3維的 [0]表示均值,[1]表示方差, [2]表示該樣本該屬性的權重【權重默認都是1】
3) m_priors[numCluster] 保存了根據最佳kmeans結果得到的每個cluster的先驗概率?
4) m_weights[numInstance][numCluster] 未賦值, 都是初值0; 保存的是每個樣本屬于每個類的權重
?
然后迭代EM。
E?step:
?
double loglk = 0.0, sOW = 0.0;for (int l = 0; l < inst.numInstances(); l++) {Instance in = inst.instance(l);//in.weight始終為1, 樣本權重//sOW 相當于就是樣本個數//logDensityForInstance計算指定樣本in的概率密度的logloglk += in.weight() * logDensityForInstance(in); sOW += in.weight();//然后修正該樣本屬于每個類的權重//double m_weights[numInstance][numCluster]m_weights[l] = distributionForInstance(in);}// reestimate priors// 調整m_priorsestimate_priors(inst);return loglk / sOW;
?
?
E step:
logDensityForInstance ->logJointDensitiesForInstance->logDensityPerClusterForInstance
?
logDensityPerClusterForInstance計算每個樣本屬于每個類的weight; 其中會用到m_model[normal]變量
logJointDensitiesForInstance 計算每個樣本的聯合密度的log:
//weights的長度就是cluster的個數double[] weights = logDensityPerClusterForInstance(inst);//這里僅僅是一個getter操作double[] priors = clusterPriors();for (int i = 0; i < weights.length; i++) {if (priors[i] > 0) {weights[i] += Math.log(priors[i]);}}return weights;
?
logDensityForInstance? 計算給定樣本的密度。。?
double[] a = logJointDensitiesForInstance(instance);double max = a[Utils.maxIndex(a)];double sum = 0.0;for(int i = 0; i < a.length; i++) {sum += Math.exp(a[i] - max);}return max + Math.log(sum);
?
?
?使用 logJointDensitiesForInstance 重新計算m_weights
m_priors[ci] = sigma(instance.m_weights[ci]); 然后對m_priors正規化
?
?
?
M step:
根據m_weights 重新計算m_model與m_modelNormal
?
當E step的兩次返回值之差小于m_minStdDev時退出。E step的返回值肯定比上一次返回值要大(EM 算法決定的)?
總結
- 上一篇: a singleton implemen
- 下一篇: cent os 下使用hashmap