opencv实现分水岭算法
生活随笔
收集整理的這篇文章主要介紹了
opencv实现分水岭算法
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
opencv實(shí)現(xiàn)分水嶺算法
// 分水嶺算法原理 // IplImage* marker_mask = 0; IplImage* markers = 0; //IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0; IplImage *img_gray = 0, *wshed = 0; CvPoint prev_pt = {-1,-1};void on_mouse( int event, int x, int y, int flags, void* param ) {if( !img )return;if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )prev_pt = cvPoint(-1,-1);else if( event == CV_EVENT_LBUTTONDOWN )prev_pt = cvPoint(x,y);else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) ){CvPoint pt = cvPoint(x,y);if( prev_pt.x < 0 )prev_pt = pt;cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );prev_pt = pt;cvShowImage( "image", img );} }void CCVMFCView::OnWatershed()//分水嶺 {int flag=0;CvRNG rng = cvRNG(-1);img0 = cvCloneImage( workImg ); // 建立工作位圖cvFlip(img0);cvNamedWindow( "image", 1 );// cvNamedWindow( "watershed transform", 1 );img = cvCloneImage( img0 );img_gray = cvCloneImage( img0 );wshed = cvCloneImage( img0 );marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );cvCvtColor( img, marker_mask, CV_BGR2GRAY );cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR );cvZero( marker_mask );cvZero( wshed );cvShowImage( "image", img );// cvShowImage( "watershed transform", wshed );cvSetMouseCallback( "image", on_mouse, 0 );m_ImageType=-3;for(;;){int c = cvWaitKey(0);if( c == 27 ) {if (!flag) { // 未加標(biāo)記wshed = cvCloneImage( img0 );}break;}if( c == 'r' ){cvZero( marker_mask );cvCopy( img0, img );cvShowImage( "image", img );}if( c == 'w' || c == '\r' ){CvMemStorage* storage = cvCreateMemStorage(0);CvSeq* contours = 0;CvMat* color_tab;int i, j, comp_count = 0;//cvSaveImage( "wshed_mask.png", marker_mask );//marker_mask = cvLoadImage( "wshed_mask.png", 0 );cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );CvSeq* contourn = contours;int n;for (n=0; contourn != 0; contourn = contourn->h_next,n++) {} // 檢查邊界數(shù)if (n) { // 已作標(biāo)記才進(jìn)行處理 cvZero( markers );for( ; contours != 0; contours = contours->h_next, comp_count++ ){cvDrawContours( markers, contours, cvScalarAll(comp_count+1),cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );}color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );for( i = 0; i < comp_count; i++ ){uchar* ptr = color_tab->data.ptr + i*3;ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);}{double t = (double)cvGetTickCount();cvWatershed( img0, markers ); // 分水嶺算法處理t = (double)cvGetTickCount() - t;// printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );}// paint the watershed imagefor( i = 0; i < markers->height; i++ ) {for( j = 0; j < markers->width; j++ ){int idx = CV_IMAGE_ELEM( markers, int, i, j );uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );if( idx == -1 )dst[0] = dst[1] = dst[2] = (uchar)255;else if( idx <= 0 || idx > comp_count )dst[0] = dst[1] = dst[2] = (uchar)0; // should not get hereelse{uchar* ptr = color_tab->data.ptr + (idx-1)*3;dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];}}}cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed ); // 圖像合成// cvShowImage( "watershed transform", wshed );cvReleaseMemStorage( &storage );cvReleaseMat( &color_tab );}else { // 未加標(biāo)記wshed = cvCloneImage( img0 );}cvCopy(wshed,workImg);cvFlip(workImg);CClientDC dc(this);StretchDIBits(dc.m_hDC, // 刷新主窗口0,0,workImg->width,workImg->height,0,0,workImg->width,workImg->height,workImg->imageData,m_lpBmi,DIB_RGB_COLORS,SRCCOPY);flag=1;}}cvDestroyWindow( "image" );cvReleaseImage(&img0);cvReleaseImage(&img);cvReleaseImage(&img_gray);cvReleaseImage(&marker_mask);cvReleaseImage(&markers);cvFlip(wshed);m_dibFlag=imageReplace(wshed,&workImg);Invalidate(); }from:?http://blog.csdn.net/abcjennifer/article/details/7315232
總結(jié)
以上是生活随笔為你收集整理的opencv实现分水岭算法的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: opencv 中 快速傅里叶变换 FFT
- 下一篇: MFC+OPENCV实现角点检测