久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

An overview of gradient descent optimization algorithms

發布時間:2025/3/21 编程问答 22 豆豆
生活随笔 收集整理的這篇文章主要介紹了 An overview of gradient descent optimization algorithms 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

轉載自:http://sebastianruder.com/optimizing-gradient-descent/

梯度下降優化及其各種變體。1.隨機梯度下降(SGD) 2.小批量梯度下降(mini-batch)3.最優點附近加速且穩定的動量法(Momentum)4.在谷歌毛臉中也使用的自適應學習率AdaGrad 5.克服AdaGrad梯度消失的RMSprop和AdaDelta。S.Ruder

Table of contents:

  • Gradient descent variants
    • Batch gradient descent
    • Stochastic gradient descent
    • Mini-batch gradient descent
  • Challenges
  • Gradient descent optimization algorithms
    • Momentum
    • Nesterov accelerated gradient
    • Adagrad
    • Adadelta
    • RMSprop
    • Adam
    • Visualization of algorithms
    • Which optimizer to choose?
  • Parallelizing and distributing SGD
    • Hogwild!
    • Downpour SGD
    • Delay-tolerant Algorithms for SGD
    • TensorFlow
    • Elastic Averaging SGD
  • Additional strategies for optimizing SGD
    • Shuffling and Curriculum Learning
    • Batch normalization
    • Early Stopping
    • Gradient noise
  • Conclusion
  • References

Gradient descent is one of the most popular algorithms to perform optimization and by far the most common way to optimize neural networks. At the same time, every state-of-the-art Deep Learning library contains implementations of various algorithms to optimize gradient descent (e.g.?lasagne's,?caffe's, and?keras'documentation). These algorithms, however, are often used as black-box optimizers, as practical explanations of their strengths and weaknesses are hard to come by.

This blog post aims at providing you with intuitions towards the behaviour of different algorithms for optimizing gradient descent that will help you put them to use. We are first going to look at the different variants of gradient descent. We will then briefly summarize challenges during training. Subsequently, we will introduce the most common optimization algorithms by showing their motivation to resolve these challenges and how this leads to the derivation of their update rules. We will also take a short look at algorithms and architectures to optimize gradient descent in a parallel and distributed setting. Finally, we will consider additional strategies that are helpful for optimizing gradient descent.

Gradient descent is a way to minimize an objective function?parameterized by a model's parameters?[Math Processing Error]?by updating the parameters in the opposite direction of the gradient of the objective function?[Math Processing Error]?w.r.t. to the parameters. The learning rate?[Math Processing Error]?determines the size of the steps we take to reach a (local) minimum. In other words, we follow the direction of the slope of the surface created by the objective function downhill until we reach a valley. If you are unfamiliar with gradient descent, you can find a good introduction on optimizing neural networks?here.

?Gradient descent variants

There are three variants of gradient descent, which differ in how much data we use to compute the gradient of the objective function. Depending on the amount of data, we make a trade-off between the accuracy of the parameter update and the time it takes to perform an update.

Batch gradient descent

Vanilla gradient descent, aka batch gradient descent, computes the gradient of the cost function w.r.t. to the parameters?[Math Processing Error]?for the entire training dataset:

[Math Processing Error].

As we need to calculate the gradients for the whole dataset to perform just?one?update, batch gradient descent can be very slow and is intractable for datasets that don't fit in memory. Batch gradient descent also doesn't allow us to update our model?online, i.e. with new examples on-the-fly.

In code, batch gradient descent looks something like this:

for i in range(nb_epochs):params_grad = evaluate_gradient(loss_function, data, params)params = params - learning_rate * params_grad

For a pre-defined number of epochs, we first compute the gradient vector?weights_grad?of the loss function for the whole dataset w.r.t. our parameter vector?params. Note that state-of-the-art deep learning libraries provide automatic differentiation that efficiently computes the gradient w.r.t. some parameters. If you derive the gradients yourself, then gradient checking is a good idea. (See?here?for some great tips on how to check gradients properly.)

We then update our parameters in the direction of the gradients with the learning rate determining how big of an update we perform. Batch gradient descent is guaranteed to converge to the global minimum for convex error surfaces and to a local minimum for non-convex surfaces.

Stochastic gradient descent

Stochastic gradient descent (SGD) in contrast performs a parameter update for?each?training example?[Math Processing Error]?and label?[Math Processing Error]:

[Math Processing Error].

Batch gradient descent performs redundant computations for large datasets, as it recomputes gradients for similar examples before each parameter update. SGD does away with this redundancy by performing one update at a time. It is therefore usually much faster and can also be used to learn online.?
SGD performs frequent updates with a high variance that cause the objective function to fluctuate heavily as in Image 1.

Image 1: SGD fluctuation (Source:? Wikipedia)

While batch gradient descent converges to the minimum of the basin the parameters are placed in, SGD's fluctuation, on the one hand, enables it to jump to new and potentially better local minima. On the other hand, this ultimately complicates convergence to the exact minimum, as SGD will keep overshooting. However, it has been shown that when we slowly decrease the learning rate, SGD shows the same convergence behaviour as batch gradient descent, almost certainly converging to a local or the global minimum for non-convex and convex optimization respectively.?
Its code fragment simply adds a loop over the training examples and evaluates the gradient w.r.t. each example. Note that we shuffle the training data at every epoch as explained in?this section.

for i in range(nb_epochs):np.random.shuffle(data)for example in data:params_grad = evaluate_gradient(loss_function, example, params)params = params - learning_rate * params_grad

Mini-batch gradient descent

Mini-batch gradient descent finally takes the best of both worlds and performs an update for every mini-batch of?[Math Processing Error]?training examples:

[Math Processing Error].

This way, it?a)?reduces the variance of the parameter updates, which can lead to more stable convergence; and?b)?can make use of highly optimized matrix optimizations common to state-of-the-art deep learning libraries that make computing the gradient w.r.t. a mini-batch very efficient. Common mini-batch sizes range between 50 and 256, but can vary for different applications. Mini-batch gradient descent is typically the algorithm of choice when training a neural network and the term SGD usually is employed also when mini-batches are used. Note: In modifications of SGD in the rest of this post, we leave out the parameters?[Math Processing Error]?for simplicity.

In code, instead of iterating over examples, we now iterate over mini-batches of size 50:

for i in range(nb_epochs):np.random.shuffle(data)for batch in get_batches(data, batch_size=50):params_grad = evaluate_gradient(loss_function, batch, params)params = params - learning_rate * params_grad

Challenges

Vanilla mini-batch gradient descent, however, does not guarantee good convergence, but offers a few challenges that need to be addressed:

  • Choosing a proper learning rate can be difficult. A learning rate that is too small leads to painfully slow convergence, while a learning rate that is too large can hinder convergence and cause the loss function to fluctuate around the minimum or even to diverge.

  • Learning rate schedules [11] try to adjust the learning rate during training by e.g. annealing, i.e. reducing the learning rate according to a pre-defined schedule or when the change in objective between epochs falls below a threshold. These schedules and thresholds, however, have to be defined in advance and are thus unable to adapt to a dataset's characteristics [10].

  • Additionally, the same learning rate applies to all parameter updates. If our data is sparse and our features have very different frequencies, we might not want to update all of them to the same extent, but perform a larger update for rarely occurring features.

  • Another key challenge of minimizing highly non-convex error functions common for neural networks is avoiding getting trapped in their numerous suboptimal local minima. Dauphin et al. [19] argue that the difficulty arises in fact not from local minima but from saddle points, i.e. points where one dimension slopes up and another slopes down. These saddle points are usually surrounded by a plateau of the same error, which makes it notoriously hard for SGD to escape, as the gradient is close to zero in all dimensions.

Gradient descent optimization algorithms

In the following, we will outline some algorithms that are widely used by the deep learning community to deal with the aforementioned challenges. We will not discuss algorithms that are infeasible to compute in practice for high-dimensional data sets, e.g. second-order methods such as?Newton's method.

Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another [1], which are common around local optima. In these scenarios, SGD oscillates across the slopes of the ravine while only making hesitant progress along the bottom towards the local optimum as in Image 2.

Image 2: SGD without momentum Image 3: SGD with momentum

Momentum [2] is a method that helps accelerate SGD in the relevant direction and dampens oscillations as can be seen in Image 3. It does this by adding a fraction?[Math Processing Error]?of the update vector of the past time step to the current update vector:

[Math Processing Error].

[Math Processing Error].

Note: Some implementations exchange the signs in the equations. The momentum term?[Math Processing Error]?is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill. The ball accumulates momentum as it rolls downhill, becoming faster and faster on the way (until it reaches its terminal velocity if there is air resistance, i.e.?[Math Processing Error]). The same thing happens to our parameter updates: The momentum term increases for dimensions whose gradients point in the same directions and reduces updates for dimensions whose gradients change directions. As a result, we gain faster convergence and reduced oscillation.

Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory. We'd like to have a smarter ball, a ball that has a notion of where it is going so that it knows to slow down before the hill slopes up again.

Nesterov accelerated gradient (NAG) [7] is a way to give our momentum term this kind of prescience. We know that we will use our momentum term?[Math Processing Error]?to move the parameters?[Math Processing Error]. Computing?[Math Processing Error]?thus gives us an approximation of the next position of the parameters (the gradient is missing for the full update), a rough idea where our parameters are going to be. We can now effectively look ahead by calculating the gradient not w.r.t. to our current parameters?[Math Processing Error]?but w.r.t. the approximate future position of our parameters:

[Math Processing Error].

[Math Processing Error].

Again, we set the momentum term?[Math Processing Error]?to a value of around 0.9. While Momentum first computes the current gradient (small blue vector in Image 4) and then takes a big jump in the direction of the updated accumulated gradient (big blue vector), NAG first makes a big jump in the direction of the previous accumulated gradient (brown vector), measures the gradient and then makes a correction (green vector). This anticipatory update prevents us from going too fast and results in increased responsiveness, which has significantly increased the performance of RNNs on a number of tasks [8].

Image 4: Nesterov update (Source:? G. Hinton's lecture 6c)

Refer to?here?for another explanation about the intuitions behind NAG, while Ilya Sutskever gives a more detailed overview in his PhD thesis [9].

Now that we are able to adapt our updates to the slope of our error function and speed up SGD in turn, we would also like to adapt our updates to each individual parameter to perform larger or smaller updates depending on their importance.

Adagrad

Adagrad [3] is an algorithm for gradient-based optimization that does just this: It adapts the learning rate to the parameters, performing larger updates for infrequent and smaller updates for frequent parameters. For this reason, it is well-suited for dealing with sparse data. Dean et al. [4] have found that Adagrad greatly improved the robustness of SGD and used it for training large-scale neural nets at Google, which -- among other things -- learned to?recognize cats in Youtube videos. Moreover, Pennington et al. [5] used Adagrad to train GloVe word embeddings, as infrequent words require much larger updates than frequent ones.

Previously, we performed an update for all parameters?[Math Processing Error]?at once as every parameter[Math Processing Error]?used the same learning rate?[Math Processing Error]. As Adagrad uses a different learning rate for every parameter?[Math Processing Error]?at every time step?[Math Processing Error], we first show Adagrad's per-parameter update, which we then vectorize. For brevity, we set?[Math Processing Error]to be the gradient of the objective function w.r.t. to the parameter?[Math Processing Error]?at time step?[Math Processing Error]:

[Math Processing Error].

The SGD update for every parameter?[Math Processing Error]?at each time step?[Math Processing Error]?then becomes:

[Math Processing Error].

In its update rule, Adagrad modifies the general learning rate?[Math Processing Error]?at each time step?[Math Processing Error]?for every parameter?[Math Processing Error]?based on the past gradients that have been computed for?[Math Processing Error]:

[Math Processing Error].

[Math Processing Error]?here is a diagonal matrix where each diagonal element?[Math Processing Error]?is the sum of the squares of the gradients w.r.t.?[Math Processing Error]?up to time step?[Math Processing Error]?24, while?[Math Processing Error]?is a smoothing term that avoids division by zero (usually on the order of?[Math Processing Error]). Interestingly, without the square root operation, the algorithm performs much worse.

As?[Math Processing Error]?contains the sum of the squares of the past gradients w.r.t. to all parameters?[Math Processing Error]?along its diagonal, we can now vectorize our implementation by performing an element-wise matrix-vector multiplication?[Math Processing Error]?between?[Math Processing Error]?and?[Math Processing Error]:

[Math Processing Error].

One of Adagrad's main benefits is that it eliminates the need to manually tune the learning rate. Most implementations use a default value of 0.01 and leave it at that.

Adagrad's main weakness is its accumulation of the squared gradients in the denominator: Since every added term is positive, the accumulated sum keeps growing during training. This in turn causes the learning rate to shrink and eventually become infinitesimally small, at which point the algorithm is no longer able to acquire additional knowledge. The following algorithms aim to resolve this flaw.

Adadelta

Adadelta [6] is an extension of Adagrad that seeks to reduce its aggressive, monotonically decreasing learning rate. Instead of accumulating all past squared gradients, Adadelta restricts the window of accumulated past gradients to some fixed size?[Math Processing Error].

Instead of inefficiently storing?[Math Processing Error]?previous squared gradients, the sum of gradients is recursively defined as a decaying average of all past squared gradients. The running average?[Math Processing Error]?at time step?[Math Processing Error]?then depends (as a fraction?[Math Processing Error]similarly to the Momentum term) only on the previous average and the current gradient:

[Math Processing Error].

We set?[Math Processing Error]?to a similar value as the momentum term, around 0.9. For clarity, we now rewrite our vanilla SGD update in terms of the parameter update vector?[Math Processing Error]:

[Math Processing Error].

[Math Processing Error].

The parameter update vector of Adagrad that we derived previously thus takes the form:

[Math Processing Error].

We now simply replace the diagonal matrix?[Math Processing Error]?with the decaying average over past squared gradients?[Math Processing Error]:

[Math Processing Error].

As the denominator is just the root mean squared (RMS) error criterion of the gradient, we can replace it with the criterion short-hand:

[Math Processing Error].

The authors note that the units in this update (as well as in SGD, Momentum, or Adagrad) do not match, i.e. the update should have the same hypothetical units as the parameter. To realize this, they first define another exponentially decaying average, this time not of squared gradients but of squared parameter updates:

[Math Processing Error].

The root mean squared error of parameter updates is thus:

[Math Processing Error].

Replacing the learning rate?[Math Processing Error]?in the previous update rule with the RMS of parameter updates finally yields the Adadelta update rule:

[Math Processing Error].

[Math Processing Error].

With Adadelta, we do not even need to set a default learning rate, as it has been eliminated from the update rule.

RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton in?Lecture 6e of his Coursera Class.

RMSprop and Adadelta have both been developed independently around the same time stemming from the need to resolve Adagrad's radically diminishing learning rates. RMSprop in fact is identical to the first update vector of Adadelta that we derived above:

[Math Processing Error].

[Math Processing Error].

RMSprop as well divides the learning rate by an exponentially decaying average of squared gradients. Hinton suggests?[Math Processing Error]?to be set to 0.9, while a good default value for the learning rate?[Math Processing Error]?is 0.001.

Adam

Adaptive Moment Estimation (Adam) [15] is another method that computes adaptive learning rates for each parameter. In addition to storing an exponentially decaying average of past squared gradients?[Math Processing Error]?like Adadelta and RMSprop, Adam also keeps an exponentially decaying average of past gradients?[Math Processing Error], similar to momentum:

[Math Processing Error].

[Math Processing Error].

[Math Processing Error]?and?[Math Processing Error]?are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients respectively, hence the name of the method. As[Math Processing Error]?and?[Math Processing Error]?are initialized as vectors of 0's, the authors of Adam observe that they are biased towards zero, especially during the initial time steps, and especially when the decay rates are small (i.e.?[Math Processing Error]?and?[Math Processing Error]?are close to 1).

They counteract these biases by computing bias-corrected first and second moment estimates:

[Math Processing Error].

[Math Processing Error].

They then use these to update the parameters just as we have seen in Adadelta and RMSprop, which yields the Adam update rule:

[Math Processing Error].

They propose default values of 0.9 for?[Math Processing Error], 0.999 for?[Math Processing Error], and?[Math Processing Error]?for?[Math Processing Error]. They show empirically that Adam works well in practice and compares favorably to other adaptive learning-method algorithms.

Visualization of algorithms

The following two animations (Image credit:?Alec Radford) provide some intuitions towards the optimization behaviour of the presented optimization algorithms.

In Image 5, we see their behaviour on the contours of a loss surface over time. Note that Adagrad, Adadelta, and RMSprop almost immediately head off in the right direction and converge similarly fast, while Momentum and NAG are led off-track, evoking the image of a ball rolling down the hill. NAG, however, is quickly able to correct its course due to its increased responsiveness by looking ahead and heads to the minimum.

Image 6 shows the behaviour of the algorithms at a saddle point, i.e. a point where one dimension has a positive slope, while the other dimension has a negative slope, which pose a difficulty for SGD as we mentioned before. Notice here that SGD, Momentum, and NAG have a hard time breaking symmetry, although the two latter eventually manage to escape the saddle point, while Adagrad, RMSprop, and Adadelta quickly head down the negative slope.

Image 5: SGD optimization on loss surface contours Image 6: SGD optimization on saddle point

As we can see, the adaptive learning-rate methods, i.e. Adagrad, Adadelta, RMSprop, and Adam are most suitable and provide the best convergence for these scenarios.

Which optimizer to use?

So, which optimizer should you now use? If your input data is sparse, then you likely achieve the best results using one of the adaptive learning-rate methods. An additional benefit is that you won't need to tune the learning rate but likely achieve the best results with the default value.

In summary, RMSprop is an extension of Adagrad that deals with its radically diminishing learning rates. It is identical to Adadelta, except that Adadelta uses the RMS of parameter updates in the numinator update rule. Adam, finally, adds bias-correction and momentum to RMSprop. Insofar, RMSprop, Adadelta, and Adam are very similar algorithms that do well in similar circumstances. Kingma et al. [15] show that its bias-correction helps Adam slightly outperform RMSprop towards the end of optimization as gradients become sparser. Insofar, Adam might be the best overall choice.

Interestingly, many recent papers use vanilla SGD without momentum and a simple learning rate annealing schedule. As has been shown, SGD usually achieves to find a minimum, but it might take significantly longer than with some of the optimizers, is much more reliant on a robust initialization and annealing schedule, and may get stuck in saddle points rather than local minima. Consequently, if you care about fast convergence and train a deep or complex neural network, you should choose one of the adaptive learning rate methods.

Parallelizing and distributing SGD

Given the ubiquity of large-scale data solutions and the availability of low-commodity clusters, distributing SGD to speed it up further is an obvious choice.?
SGD by itself is inherently sequential: Step-by-step, we progress further towards the minimum. Running it provides good convergence but can be slow particularly on large datasets. In contrast, running SGD asynchronously is faster, but suboptimal communication between workers can lead to poor convergence. Additionally, we can also parallelize SGD on one machine without the need for a large computing cluster. The following are algorithms and architectures that have been proposed to optimize parallelized and distributed SGD.

Hogwild!

Niu et al. [23] introduce an update scheme called Hogwild! that allows performing SGD updates in parallel on CPUs. Processors are allowed to access shared memory without locking the parameters. This only works if the input data is sparse, as each update will only modify a fraction of all parameters. They show that in this case, the update scheme achieves almost an optimal rate of convergence, as it is unlikely that processors will overwrite useful information.

Downpour SGD

Downpour SGD is an asynchronous variant of SGD that was used by Dean et al. [4] in their DistBelief framework (predecessor to TensorFlow) at Google. It runs multiple replicas of a model in parallel on subsets of the training data. These models send their updates to a parameter server, which is split across many machines. Each machine is responsible for storing and updating a fraction of the model's parameters. However, as replicas don't communicate with each other e.g. by sharing weights or updates, their parameters are continuously at risk of diverging, hindering convergence.

Delay-tolerant Algorithms for SGD

McMahan and Streeter [12] extend AdaGrad to the parallel setting by developing delay-tolerant algorithms that not only adapt to past gradients, but also to the update delays. This has been shown to work well in practice.

TensorFlow

TensorFlow?[13] is Google's recently open-sourced framework for the implementation and deployment of large-scale machine learning models. It is based on their experience with DistBelief and is already used internally to perform computations on a large range of mobile devices as well as on large-scale distributed systems. For distributed execution, a computation graph is split into a subgraph for every device and communication takes place using Send/Receive node pairs. However, the open source version of TensorFlow currently does not support distributed functionality (see?here).

?Elastic Averaging SGD

Zhang et al. [14] propose Elastic Averaging SGD (EASGD), which links the parameters of the workers of asynchronous SGD with an elastic force, i.e. a center variable stored by the parameter server. This allows the local variables to fluctuate further from the center variable, which in theory allows for more exploration of the parameter space. They show empirically that this increased capacity for exploration leads to improved performance by finding new local optima.

Additional strategies for optimizing SGD

Finally, we introduce additional strategies that can be used alongside any of the previously mentioned algorithms to further improve the performance of SGD. For a great overview of some of some other common tricks, refer to [22].

Shuffling and Curriculum Learning

Generally, we want to avoid providing the training examples in a meaningful order to our model as this may bias the optimization algorithm. Consequently, it is often a good idea to shuffle the training data after every epoch.

On the other hand, for some cases where we aim to solve progressively harder problems, supplying the training examples in a meaningful order may actually lead to improved performance and better convergence. The method for establishing this meaningful order is called Curriculum Learning [16].

Zaremba and Sutskever [17] were only able to train LSTMs to evaluate simple programs using Curriculum Learning and show that a combined or mixed strategy is better than the naive one, which shorts examples by increasing difficulty.

Batch normalization

To facilitate learning, we typically normalize the initial values of our parameters by initializing them with zero mean and unit variance. As training progresses and we update parameters to different extents, we lose this normalization, which slows down training and amplifies changes as the network becomes deeper.

Batch normalization [18] reestablishes these normalizations for every mini-batch and changes are back-propagated through the operation as well. By making normalization part of the model architecture, we are able to use higher learning rates and pay less attention to the initialization parameters. Batch normalization additionally acts as a regularizer, reducing (and sometimes even eliminating) the need for Dropout.

Early stopping

According to Geoff Hinton: "Early stopping (is) beautiful free lunch" (NIPS 2015 Tutorial slides, slide 63). You should thus always monitor error on a validation set during training and stop (with some patience) if your validation error does not improve enough.

Gradient noise

Neelakantan et al. [21] add noise that follows a Gaussian distribution?[Math Processing Error]?to each gradient update:

[Math Processing Error].

They anneal the variance according to the following schedule:

[Math Processing Error].

They show that adding this noise makes networks more robust to poor initialization and helps training particularly deep and complex networks. They suspect that the added noise gives the model more chances to escape and find new local minima, which are more frequent for deeper models.

Conclusion

In this blog post, we have initially looked at the three variants of gradient descent, among which mini-batch gradient descent is the most popular. We have then investigated algorithms that are most commonly used for optimizing SGD: Momentum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, Adam, as well as different algorithms to optimize asynchronous SGD. Finally, we've considered other strategies to improve SGD such as shuffling and curriculum learning, batch normalization, and early stopping.

I hope that this blog post was able to provide you with some intuitions towards the motivation and the behaviour of the different optimization algorithms. Are there any obvious algorithms to improve SGD that I've missed? What tricks are you using yourself to facilitate training with SGD??Let me know in the comments below.

Acknowledgements

Thanks to?Denny Britz?and?Cesar Salgado?for reading drafts of this post and providing suggestions.

References

  • Sutton, R. S. (1986). Two problems with backpropagation and other steepest-descent learning procedures for networks. Proc. 8th Annual Conf. Cognitive Science Society.?

  • Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of the International Neural Network Society, 12(1), 145–151.http://doi.org/10.1016/S0893-6080(98)00116-6?

  • Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12, 2121–2159. Retrieved fromhttp://jmlr.org/papers/v12/duchi11a.html?

  • Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V, … Ng, A. Y. (2012). Large Scale Distributed Deep Networks. NIPS 2012: Neural Information Processing Systems, 1–11.http://doi.org/10.1109/ICDAR.2011.95?

  • Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1532–1543.http://doi.org/10.3115/v1/D14-1162?

  • Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. Retrieved fromhttp://arxiv.org/abs/1212.5701?

  • Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.), vol. 269, pp. 543– 547.?

  • Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2012). Advances in Optimizing Recurrent Networks. Retrieved from?http://arxiv.org/abs/1212.0901?

  • Sutskever, I. (2013). Training Recurrent neural Networks. PhD Thesis.?

  • Darken, C., Chang, J., & Moody, J. (1992). Learning rate schedules for faster stochastic gradient search. Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop, (September), 1–11.http://doi.org/10.1109/NNSP.1992.253713?

  • H. Robinds and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.?

  • Mcmahan, H. B., & Streeter, M. (2014). Delay-Tolerant Algorithms for Asynchronous Distributed Online Learning. Advances in Neural Information Processing Systems (Proceedings of NIPS), 1–9.?

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X. (2015). TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems.?

  • Zhang, S., Choromanska, A., & LeCun, Y. (2015). Deep learning with Elastic Averaging SGD. Neural Information Processing Systems Conference (NIPS 2015), 1–24. Retrieved fromhttp://arxiv.org/abs/1412.6651?

  • Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for Stochastic Optimization. International Conference on Learning Representations, 1–13.?

  • Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. Proceedings of the 26th Annual International Conference on Machine Learning, 41–48.?http://doi.org/10.1145/1553374.1553380?

  • Zaremba, W., & Sutskever, I. (2014). Learning to Execute, 1–25. Retrieved fromhttp://arxiv.org/abs/1410.4615?

  • Ioffe, S., & Szegedy, C. (2015). Batch Normalization : Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv Preprint arXiv:1502.03167v3.?

  • Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. arXiv, 1–14. Retrieved fromhttp://arxiv.org/abs/1406.2572?

  • Sutskever, I., & Martens, J. (2013). On the importance of initialization and momentum in deep learning.http://doi.org/10.1109/ICASSP.2013.6639346?

  • Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., & Martens, J. (2015). Adding Gradient Noise Improves Learning for Very Deep Networks, 1–11. Retrieved fromhttp://arxiv.org/abs/1511.06807?

  • LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient BackProp. Neural Networks: Tricks of the Trade, 1524, 9–50.?http://doi.org/10.1007/3-540-49430-8_2?

  • Niu, F., Recht, B., Christopher, R., & Wright, S. J. (2011). Hogwild ! : A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, 1–22.?

  • Duchi et al. [3] give this matrix as an alternative to the?full?matrix containing the outer products of all previous gradients, as the computation of the matrix square root is infeasible even for a moderate number of parameters?[Math Processing Error].?

  • Image credit for cover photo:?Karpathy's beautiful loss functions tumblr


    《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀

    總結

    以上是生活随笔為你收集整理的An overview of gradient descent optimization algorithms的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    国产办公室秘书无码精品99 | 中文字幕无码人妻少妇免费 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 日韩精品成人一区二区三区 | 欧美人与物videos另类 | 国产乱码精品一品二品 | 丰满少妇人妻久久久久久 | 18黄暴禁片在线观看 | 欧美成人高清在线播放 | 少妇高潮一区二区三区99 | 无码国产乱人伦偷精品视频 | 无码人妻丰满熟妇区五十路百度 | 四虎4hu永久免费 | 人人妻人人藻人人爽欧美一区 | 亚洲国产精品久久久天堂 | 成 人影片 免费观看 | 国产电影无码午夜在线播放 | 国产人妻精品午夜福利免费 | 欧美三级a做爰在线观看 | 国产av一区二区三区最新精品 | 久久久久久久久蜜桃 | 婷婷六月久久综合丁香 | 国色天香社区在线视频 | 老熟妇仑乱视频一区二区 | 亚洲精品国产第一综合99久久 | 欧美阿v高清资源不卡在线播放 | 中文精品久久久久人妻不卡 | 欧美乱妇无乱码大黄a片 | 国产人妖乱国产精品人妖 | 久久精品中文闷骚内射 | 男女下面进入的视频免费午夜 | 99久久99久久免费精品蜜桃 | 无码任你躁久久久久久久 | 国产 精品 自在自线 | 正在播放东北夫妻内射 | 午夜嘿嘿嘿影院 | 一个人看的www免费视频在线观看 | 无码av免费一区二区三区试看 | 久久精品国产一区二区三区肥胖 | 国产精品无码一区二区桃花视频 | 国内少妇偷人精品视频 | 午夜时刻免费入口 | 人妻尝试又大又粗久久 | 九九综合va免费看 | 婷婷五月综合缴情在线视频 | 麻豆精产国品 | 中文字幕日韩精品一区二区三区 | 亚洲综合精品香蕉久久网 | 国产99久久精品一区二区 | 中文字幕精品av一区二区五区 | 国产手机在线αⅴ片无码观看 | 亚洲成av人片天堂网无码】 | 色五月五月丁香亚洲综合网 | 欧美丰满老熟妇xxxxx性 | 国产特级毛片aaaaaaa高清 | 好屌草这里只有精品 | 国产亚洲视频中文字幕97精品 | 欧美国产亚洲日韩在线二区 | 婷婷色婷婷开心五月四房播播 | 伊人久久婷婷五月综合97色 | 欧美日韩一区二区三区自拍 | 无码人妻少妇伦在线电影 | 亚洲精品国偷拍自产在线麻豆 | 精品乱子伦一区二区三区 | 色综合视频一区二区三区 | 扒开双腿疯狂进出爽爽爽视频 | 久久精品女人的天堂av | 黑人巨大精品欧美一区二区 | 国产综合久久久久鬼色 | 欧美老熟妇乱xxxxx | 精品久久久久久亚洲精品 | 国产免费无码一区二区视频 | 日本熟妇人妻xxxxx人hd | 樱花草在线播放免费中文 | 国产综合在线观看 | 在线天堂新版最新版在线8 | 熟女俱乐部五十路六十路av | 日韩欧美中文字幕公布 | 亚洲精品www久久久 | 国产人妻大战黑人第1集 | 色综合久久久无码网中文 | 中文字幕无码免费久久9一区9 | 日韩欧美中文字幕公布 | 人人超人人超碰超国产 | 美女黄网站人色视频免费国产 | www国产精品内射老师 | 国产精品久久久久久无码 | 99久久精品午夜一区二区 | av小次郎收藏 | 久久这里只有精品视频9 | 无遮无挡爽爽免费视频 | 久久人人爽人人爽人人片av高清 | 无码人妻久久一区二区三区不卡 | 特黄特色大片免费播放器图片 | 国产午夜亚洲精品不卡 | 国产欧美精品一区二区三区 | 久久午夜无码鲁丝片午夜精品 | 粗大的内捧猛烈进出视频 | 在线天堂新版最新版在线8 | 久久99精品久久久久久动态图 | 久精品国产欧美亚洲色aⅴ大片 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产亚洲精品精品国产亚洲综合 | 国产乱人伦av在线无码 | 亚洲一区av无码专区在线观看 | 日韩精品一区二区av在线 | 欧美激情内射喷水高潮 | 中文精品无码中文字幕无码专区 | 熟妇人妻中文av无码 | 无码纯肉视频在线观看 | 丰满少妇弄高潮了www | 亚洲春色在线视频 | 天天摸天天碰天天添 | 在线播放免费人成毛片乱码 | 无码午夜成人1000部免费视频 | 中国女人内谢69xxxx | 欧美三级a做爰在线观看 | 亚洲欧美日韩成人高清在线一区 | 亚洲成av人综合在线观看 | 人妻夜夜爽天天爽三区 | 欧美成人高清在线播放 | 最新国产乱人伦偷精品免费网站 | 国产成人无码一二三区视频 | 宝宝好涨水快流出来免费视频 | 亚洲狠狠色丁香婷婷综合 | 亚洲熟妇色xxxxx欧美老妇 | 国产成人精品三级麻豆 | 夜夜躁日日躁狠狠久久av | 婷婷五月综合激情中文字幕 | 国产成人精品优优av | 老熟妇乱子伦牲交视频 | 久久zyz资源站无码中文动漫 | 性啪啪chinese东北女人 | 亚洲中文字幕无码中文字在线 | 无码一区二区三区在线观看 | 亚洲国产高清在线观看视频 | 丰满肥臀大屁股熟妇激情视频 | 一本大道伊人av久久综合 | 久久精品丝袜高跟鞋 | 人妻体内射精一区二区三四 | 台湾无码一区二区 | 亚洲中文字幕无码中文字在线 | 成人免费视频在线观看 | 国产精品对白交换视频 | 女人被爽到呻吟gif动态图视看 | 1000部啪啪未满十八勿入下载 | 国产美女精品一区二区三区 | 乱人伦人妻中文字幕无码久久网 | 国产深夜福利视频在线 | 无码毛片视频一区二区本码 | 日韩少妇内射免费播放 | 少妇被粗大的猛进出69影院 | 精品一区二区三区无码免费视频 | 中文无码精品a∨在线观看不卡 | 日韩视频 中文字幕 视频一区 | 国产乱人伦偷精品视频 | 精品国产精品久久一区免费式 | 无码人妻久久一区二区三区不卡 | 亚洲人成影院在线无码按摩店 | 国产精华av午夜在线观看 | 老熟女乱子伦 | 鲁一鲁av2019在线 | 四虎永久在线精品免费网址 | 美女黄网站人色视频免费国产 | 老熟女重囗味hdxx69 | 久久精品一区二区三区四区 | 欧美激情综合亚洲一二区 | 亚洲爆乳大丰满无码专区 | 国产精品久久久 | 又黄又爽又色的视频 | 国产成人精品优优av | 男人和女人高潮免费网站 | 国产日产欧产精品精品app | 一区二区三区乱码在线 | 欧洲 | 久久精品一区二区三区四区 | 精品午夜福利在线观看 | 国产激情一区二区三区 | 亚洲 日韩 欧美 成人 在线观看 | 在线精品国产一区二区三区 | 福利一区二区三区视频在线观看 | 午夜熟女插插xx免费视频 | 亚洲精品一区二区三区四区五区 | 国产精品美女久久久久av爽李琼 | 国产精品丝袜黑色高跟鞋 | 午夜丰满少妇性开放视频 | 18无码粉嫩小泬无套在线观看 | 欧美35页视频在线观看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 男女超爽视频免费播放 | 亚洲国产精品无码一区二区三区 | 乱人伦中文视频在线观看 | 乱人伦人妻中文字幕无码久久网 | 风流少妇按摩来高潮 | 欧美日韩一区二区三区自拍 | 国产精品无码一区二区桃花视频 | 中文无码成人免费视频在线观看 | 性色欲网站人妻丰满中文久久不卡 | 精品国产一区二区三区四区在线看 | 国产做国产爱免费视频 | 波多野结衣av一区二区全免费观看 | 99久久久无码国产aaa精品 | 色五月五月丁香亚洲综合网 | 国产真人无遮挡作爱免费视频 | 亚洲精品久久久久avwww潮水 | 成人精品视频一区二区 | 国产一精品一av一免费 | 狠狠色丁香久久婷婷综合五月 | 亚洲经典千人经典日产 | 久久久中文字幕日本无吗 | 欧美一区二区三区视频在线观看 | 天海翼激烈高潮到腰振不止 | 又紧又大又爽精品一区二区 | 色五月丁香五月综合五月 | 亚洲国产av精品一区二区蜜芽 | 免费国产成人高清在线观看网站 | 国内精品久久毛片一区二区 | av人摸人人人澡人人超碰下载 | 亚洲色欲色欲欲www在线 | 中文字幕无码日韩欧毛 | 国产又粗又硬又大爽黄老大爷视 | 无码人妻出轨黑人中文字幕 | 国产卡一卡二卡三 | 男女下面进入的视频免费午夜 | 久久久久久九九精品久 | 久久久精品成人免费观看 | 久久久久久av无码免费看大片 | 无码人妻久久一区二区三区不卡 | 久久综合狠狠综合久久综合88 | 波多野42部无码喷潮在线 | 欧洲极品少妇 | 婷婷五月综合缴情在线视频 | 日日干夜夜干 | 性色av无码免费一区二区三区 | 欧美日韩人成综合在线播放 | 性色欲网站人妻丰满中文久久不卡 | 偷窥日本少妇撒尿chinese | 动漫av一区二区在线观看 | 亚洲中文字幕av在天堂 | 欧美激情一区二区三区成人 | 国产在线aaa片一区二区99 | a片在线免费观看 | 亚洲日韩av一区二区三区四区 | 少妇性荡欲午夜性开放视频剧场 | 88国产精品欧美一区二区三区 | 国产精品久久久久无码av色戒 | 极品尤物被啪到呻吟喷水 | 亚洲综合伊人久久大杳蕉 | 欧美老妇交乱视频在线观看 | 妺妺窝人体色www在线小说 | 97久久精品无码一区二区 | 亚洲精品欧美二区三区中文字幕 | 51国偷自产一区二区三区 | 熟女少妇在线视频播放 | 亚洲va欧美va天堂v国产综合 | 国产莉萝无码av在线播放 | 亚洲欧美精品伊人久久 | 东北女人啪啪对白 | 国产超碰人人爽人人做人人添 | 亚洲欧洲无卡二区视頻 | 亚洲va中文字幕无码久久不卡 | 无码福利日韩神码福利片 | 骚片av蜜桃精品一区 | 又大又紧又粉嫩18p少妇 | 综合网日日天干夜夜久久 | 丰满少妇弄高潮了www | 精品欧洲av无码一区二区三区 | 日韩少妇白浆无码系列 | 人妻体内射精一区二区三四 | 成人精品一区二区三区中文字幕 | 亚洲爆乳无码专区 | 我要看www免费看插插视频 | 国产成人无码一二三区视频 | 亚洲中文无码av永久不收费 | 久久亚洲精品中文字幕无男同 | 欧美精品免费观看二区 | 精品人人妻人人澡人人爽人人 | 国产特级毛片aaaaaaa高清 | 国产麻豆精品精东影业av网站 | 中文无码成人免费视频在线观看 | 久青草影院在线观看国产 | 99久久久无码国产精品免费 | 奇米影视888欧美在线观看 | 亚洲自偷自偷在线制服 | 免费网站看v片在线18禁无码 | 国产精品igao视频网 | 久久国产精品二国产精品 | 日日橹狠狠爱欧美视频 | 日日鲁鲁鲁夜夜爽爽狠狠 | 色婷婷综合中文久久一本 | 国产乱人偷精品人妻a片 | aⅴ亚洲 日韩 色 图网站 播放 | 成 人 免费观看网站 | 强开小婷嫩苞又嫩又紧视频 | 人妻有码中文字幕在线 | 又大又黄又粗又爽的免费视频 | 国产成人午夜福利在线播放 | 欧美日韩综合一区二区三区 | 女人和拘做爰正片视频 | 免费乱码人妻系列无码专区 | 图片小说视频一区二区 | 精品国产av色一区二区深夜久久 | 伊人久久婷婷五月综合97色 | a片免费视频在线观看 | 亚洲爆乳大丰满无码专区 | 久久伊人色av天堂九九小黄鸭 | 日本成熟视频免费视频 | 黑人巨大精品欧美黑寡妇 | 欧美日韩综合一区二区三区 | 大肉大捧一进一出视频出来呀 | 377p欧洲日本亚洲大胆 | 国产艳妇av在线观看果冻传媒 | 99久久人妻精品免费一区 | av无码久久久久不卡免费网站 | 丰腴饱满的极品熟妇 | 亚洲精品国偷拍自产在线观看蜜桃 | 牛和人交xxxx欧美 | 亚洲呦女专区 | 99久久人妻精品免费一区 | 婷婷丁香六月激情综合啪 | 狠狠色欧美亚洲狠狠色www | 亚洲欧美日韩国产精品一区二区 | 色综合久久久无码中文字幕 | 久热国产vs视频在线观看 | 六月丁香婷婷色狠狠久久 | 在线看片无码永久免费视频 | 国产真实伦对白全集 | 图片区 小说区 区 亚洲五月 | 人妻aⅴ无码一区二区三区 | 欧美精品免费观看二区 | 亚洲人成网站色7799 | 99久久精品午夜一区二区 | 精品一区二区不卡无码av | 在线亚洲高清揄拍自拍一品区 | 久久久精品欧美一区二区免费 | 亚洲日韩av一区二区三区四区 | 一本无码人妻在中文字幕免费 | 国产在线aaa片一区二区99 | 精品久久久无码中文字幕 | 草草网站影院白丝内射 | 精品一二三区久久aaa片 | 99久久精品午夜一区二区 | 亚洲精品久久久久中文第一幕 | 无码人妻少妇伦在线电影 | 色五月五月丁香亚洲综合网 | 欧美人妻一区二区三区 | 亚洲色欲久久久综合网东京热 | 蜜桃臀无码内射一区二区三区 | 狠狠色丁香久久婷婷综合五月 | 国产三级久久久精品麻豆三级 | 波多野结衣 黑人 | 人妻熟女一区 | 无码人妻丰满熟妇区五十路百度 | 亚洲自偷自偷在线制服 | 国产超级va在线观看视频 | 99精品国产综合久久久久五月天 | 亚洲精品综合五月久久小说 | 日本在线高清不卡免费播放 | 亚洲成av人在线观看网址 | 久久午夜无码鲁丝片午夜精品 | 最近的中文字幕在线看视频 | 国产av无码专区亚洲a∨毛片 | 国内综合精品午夜久久资源 | 免费国产成人高清在线观看网站 | 久久久亚洲欧洲日产国码αv | 国产成人无码av片在线观看不卡 | 国产精品久久久久7777 | 波多野结衣一区二区三区av免费 | 野狼第一精品社区 | 久久国产36精品色熟妇 | 亚洲 a v无 码免 费 成 人 a v | 日韩欧美中文字幕公布 | 性色欲情网站iwww九文堂 | 日韩精品无码免费一区二区三区 | 兔费看少妇性l交大片免费 | 国产农村乱对白刺激视频 | 亚洲另类伦春色综合小说 | 国产乱人无码伦av在线a | 国产精品爱久久久久久久 | 真人与拘做受免费视频一 | 一本久道久久综合狠狠爱 | 人妻熟女一区 | 日韩 欧美 动漫 国产 制服 | 宝宝好涨水快流出来免费视频 | 性做久久久久久久久 | 久久综合激激的五月天 | 欧美人妻一区二区三区 | 日本精品少妇一区二区三区 | 黄网在线观看免费网站 | 色一情一乱一伦一视频免费看 | 俺去俺来也在线www色官网 | 亚洲精品www久久久 | 亚洲一区二区三区香蕉 | 三上悠亚人妻中文字幕在线 | 亚洲精品一区二区三区在线观看 | 无码av最新清无码专区吞精 | 国产sm调教视频在线观看 | 国产一区二区三区四区五区加勒比 | 久久99精品国产麻豆蜜芽 | 高清国产亚洲精品自在久久 | 装睡被陌生人摸出水好爽 | 成人亚洲精品久久久久软件 | 天干天干啦夜天干天2017 | 欧美 丝袜 自拍 制服 另类 | 欧美freesex黑人又粗又大 | 狠狠cao日日穞夜夜穞av | 久久99热只有频精品8 | 丰满肥臀大屁股熟妇激情视频 | 天天拍夜夜添久久精品大 | 国产成人精品视频ⅴa片软件竹菊 | 大地资源网第二页免费观看 | 久久这里只有精品视频9 | 亚洲中文字幕成人无码 | 国产黑色丝袜在线播放 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 最近中文2019字幕第二页 | 香港三级日本三级妇三级 | 久久午夜无码鲁丝片午夜精品 | 国产高潮视频在线观看 | 久久97精品久久久久久久不卡 | 伊人久久大香线蕉亚洲 | 国产又粗又硬又大爽黄老大爷视 | 青春草在线视频免费观看 | 强伦人妻一区二区三区视频18 | 国产精品.xx视频.xxtv | ass日本丰满熟妇pics | 丁香花在线影院观看在线播放 | 国产一区二区三区精品视频 | 国产人妻人伦精品1国产丝袜 | 丰满人妻翻云覆雨呻吟视频 | 色欲久久久天天天综合网精品 | 秋霞特色aa大片 | 日本精品少妇一区二区三区 | 日本va欧美va欧美va精品 | 亚洲精品一区二区三区婷婷月 | 欧洲美熟女乱又伦 | 无码国产激情在线观看 | 中文精品久久久久人妻不卡 | 国产热a欧美热a在线视频 | 四虎国产精品免费久久 | 精品厕所偷拍各类美女tp嘘嘘 | 久久精品99久久香蕉国产色戒 | 高清国产亚洲精品自在久久 | 免费乱码人妻系列无码专区 | 2020久久香蕉国产线看观看 | 日日摸天天摸爽爽狠狠97 | 日本爽爽爽爽爽爽在线观看免 | 人妻无码αv中文字幕久久琪琪布 | 又色又爽又黄的美女裸体网站 | 久久精品一区二区三区四区 | 午夜免费福利小电影 | 老子影院午夜精品无码 | 乱人伦人妻中文字幕无码 | 精品欧美一区二区三区久久久 | 永久免费精品精品永久-夜色 | 麻豆国产人妻欲求不满谁演的 | 色一情一乱一伦一视频免费看 | 无码精品国产va在线观看dvd | 成年美女黄网站色大免费视频 | 300部国产真实乱 | 国产区女主播在线观看 | 国产精品国产自线拍免费软件 | 夜夜高潮次次欢爽av女 | 亚洲精品国产a久久久久久 | 荫蒂被男人添的好舒服爽免费视频 | 久久久久久九九精品久 | 人人妻人人澡人人爽人人精品浪潮 | 久久人妻内射无码一区三区 | 亚洲精品鲁一鲁一区二区三区 | 国产口爆吞精在线视频 | 色婷婷av一区二区三区之红樱桃 | 亚洲经典千人经典日产 | 风流少妇按摩来高潮 | 国产精品久久国产精品99 | 国产av无码专区亚洲a∨毛片 | 天天综合网天天综合色 | 亚洲va中文字幕无码久久不卡 | 国模大胆一区二区三区 | 少妇激情av一区二区 | 国产精品人人妻人人爽 | 免费看男女做好爽好硬视频 | 亚洲啪av永久无码精品放毛片 | 久久99精品国产.久久久久 | 午夜嘿嘿嘿影院 | 国产高清av在线播放 | 亚洲中文字幕成人无码 | 无码人妻精品一区二区三区不卡 | 日本va欧美va欧美va精品 | 亚洲精品午夜无码电影网 | 成在人线av无码免费 | 人人妻人人澡人人爽欧美精品 | 麻豆果冻传媒2021精品传媒一区下载 | 狂野欧美激情性xxxx | 一本加勒比波多野结衣 | 无人区乱码一区二区三区 | 日韩亚洲欧美精品综合 | 小鲜肉自慰网站xnxx | 国产亚洲精品久久久久久久 | 中文字幕乱码人妻无码久久 | 日本一区二区三区免费高清 | 久久久久av无码免费网 | 最近中文2019字幕第二页 | 久久综合网欧美色妞网 | 中文字幕+乱码+中文字幕一区 | 日本一卡二卡不卡视频查询 | 日日摸夜夜摸狠狠摸婷婷 | 一个人免费观看的www视频 | 老司机亚洲精品影院 | 久久久久成人精品免费播放动漫 | 特级做a爰片毛片免费69 | 中文无码成人免费视频在线观看 | 国产麻豆精品精东影业av网站 | 免费观看黄网站 | 国产成人无码专区 | 亚洲理论电影在线观看 | 岛国片人妻三上悠亚 | 亚洲国精产品一二二线 | 99久久婷婷国产综合精品青草免费 | 久久五月精品中文字幕 | 日本免费一区二区三区最新 | 欧美日韩在线亚洲综合国产人 | 午夜免费福利小电影 | 亚洲伊人久久精品影院 | 国产农村乱对白刺激视频 | 国产sm调教视频在线观看 | 一本大道伊人av久久综合 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 久久无码人妻影院 | 97夜夜澡人人双人人人喊 | 婷婷六月久久综合丁香 | 欧美xxxxx精品 | 欧美精品无码一区二区三区 | 国产激情无码一区二区 | 国产精品久久久 | 无码人妻黑人中文字幕 | 国产精品久久久久久久影院 | 无码人妻av免费一区二区三区 | 成 人影片 免费观看 | 国产成人精品视频ⅴa片软件竹菊 | 99精品国产综合久久久久五月天 | 国产美女精品一区二区三区 | 亚洲一区二区三区 | 成 人 免费观看网站 | 国产精品久久久午夜夜伦鲁鲁 | 麻花豆传媒剧国产免费mv在线 | 日本精品人妻无码免费大全 | 久久久久亚洲精品中文字幕 | 性色av无码免费一区二区三区 | 亚洲国产成人a精品不卡在线 | 亲嘴扒胸摸屁股激烈网站 | 男人扒开女人内裤强吻桶进去 | 亚拍精品一区二区三区探花 | 欧美怡红院免费全部视频 | 青草青草久热国产精品 | 福利一区二区三区视频在线观看 | 免费观看又污又黄的网站 | 曰韩少妇内射免费播放 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产麻豆精品精东影业av网站 | 强辱丰满人妻hd中文字幕 | 又粗又大又硬毛片免费看 | 在线观看欧美一区二区三区 | 亚洲s码欧洲m码国产av | 国产精品99久久精品爆乳 | 中文字幕无码av波多野吉衣 | 欧美高清在线精品一区 | 亚洲精品无码人妻无码 | 成人欧美一区二区三区黑人免费 | 麻豆果冻传媒2021精品传媒一区下载 | 久久国产精品精品国产色婷婷 | 色五月五月丁香亚洲综合网 | 亚洲精品国产精品乱码不卡 | 国产无遮挡又黄又爽免费视频 | 国产猛烈高潮尖叫视频免费 | 少妇厨房愉情理9仑片视频 | 麻豆国产人妻欲求不满谁演的 | 亚洲成a人一区二区三区 | 中文字幕无码日韩专区 | 国产成人精品优优av | 国产xxx69麻豆国语对白 | 天堂在线观看www | 强开小婷嫩苞又嫩又紧视频 | 六月丁香婷婷色狠狠久久 | 亚洲日韩av片在线观看 | 日韩精品成人一区二区三区 | 欧美zoozzooz性欧美 | 麻豆精品国产精华精华液好用吗 | 亚洲精品国偷拍自产在线观看蜜桃 | 特黄特色大片免费播放器图片 | 亚洲春色在线视频 | 国内少妇偷人精品视频免费 | 欧美成人免费全部网站 | 国产农村乱对白刺激视频 | 久久久久久亚洲精品a片成人 | 亚洲熟悉妇女xxx妇女av | 一个人免费观看的www视频 | 国产偷抇久久精品a片69 | 国产在线精品一区二区高清不卡 | 无码人妻出轨黑人中文字幕 | 蜜臀av无码人妻精品 | 少妇性荡欲午夜性开放视频剧场 | 亚洲日韩av一区二区三区四区 | 最近中文2019字幕第二页 | 天天综合网天天综合色 | 美女极度色诱视频国产 | 人妻少妇精品无码专区二区 | 2020久久香蕉国产线看观看 | 蜜桃av抽搐高潮一区二区 | 国产97色在线 | 免 | 网友自拍区视频精品 | 中文字幕乱码中文乱码51精品 | 成年美女黄网站色大免费全看 | 99国产精品白浆在线观看免费 | 国产色精品久久人妻 | 国产偷抇久久精品a片69 | 激情五月综合色婷婷一区二区 | 男人和女人高潮免费网站 | 男人的天堂av网站 | 精品国产aⅴ无码一区二区 | 国产9 9在线 | 中文 | 欧美兽交xxxx×视频 | 高清国产亚洲精品自在久久 | 东京无码熟妇人妻av在线网址 | 欧美老熟妇乱xxxxx | 亚洲精品国产精品乱码视色 | av香港经典三级级 在线 | 欧美老妇交乱视频在线观看 | 蜜桃av抽搐高潮一区二区 | 麻豆国产人妻欲求不满谁演的 | 暴力强奷在线播放无码 | 麻豆蜜桃av蜜臀av色欲av | 精品无码av一区二区三区 | 特大黑人娇小亚洲女 | 野外少妇愉情中文字幕 | 国产一区二区三区四区五区加勒比 | 麻豆av传媒蜜桃天美传媒 | 九月婷婷人人澡人人添人人爽 | 国内少妇偷人精品视频 | 亚洲 高清 成人 动漫 | 夜夜躁日日躁狠狠久久av | 国产午夜福利亚洲第一 | 国产精品18久久久久久麻辣 | 丰满肥臀大屁股熟妇激情视频 | 亚洲中文字幕无码中文字在线 | 国产一区二区三区精品视频 | 人妻体内射精一区二区三四 | 人妻少妇精品视频专区 | 亚洲熟妇自偷自拍另类 | 成人亚洲精品久久久久软件 | 国产口爆吞精在线视频 | 无码人妻少妇伦在线电影 | 国产办公室秘书无码精品99 | 国产精品美女久久久久av爽李琼 | 亚洲精品一区三区三区在线观看 | 牛和人交xxxx欧美 | 麻豆国产丝袜白领秘书在线观看 | 亚洲中文无码av永久不收费 | 麻豆精品国产精华精华液好用吗 | 漂亮人妻洗澡被公强 日日躁 | 日韩人妻系列无码专区 | 国产精品对白交换视频 | 久久精品国产亚洲精品 | 国产黄在线观看免费观看不卡 | 在线精品亚洲一区二区 | 美女张开腿让人桶 | 无码人妻丰满熟妇区五十路百度 | 99视频精品全部免费免费观看 | 成人一在线视频日韩国产 | 亚洲成av人片天堂网无码】 | 日韩精品成人一区二区三区 | аⅴ资源天堂资源库在线 | 5858s亚洲色大成网站www | 77777熟女视频在线观看 а天堂中文在线官网 | 亚洲另类伦春色综合小说 | 99久久精品日本一区二区免费 | 亚洲 另类 在线 欧美 制服 | 国产超级va在线观看视频 | 丰满少妇熟乱xxxxx视频 | av无码久久久久不卡免费网站 | 久久精品女人天堂av免费观看 | 国产精品-区区久久久狼 | 成人亚洲精品久久久久软件 | 人妻尝试又大又粗久久 | 日韩欧美成人免费观看 | 人人妻人人澡人人爽精品欧美 | 久久天天躁狠狠躁夜夜免费观看 | 久久精品人妻少妇一区二区三区 | 久久久久久久久888 | 国产人成高清在线视频99最全资源 | 欧美 日韩 人妻 高清 中文 | 特大黑人娇小亚洲女 | 天天躁日日躁狠狠躁免费麻豆 | 日本va欧美va欧美va精品 | 大地资源网第二页免费观看 | 欧美 丝袜 自拍 制服 另类 | 秋霞特色aa大片 | 亚洲伊人久久精品影院 | 亚洲国产精品成人久久蜜臀 | 精品乱码久久久久久久 | 久久久久久av无码免费看大片 | 国产成人一区二区三区别 | 国产精品久久久久无码av色戒 | 粗大的内捧猛烈进出视频 | 日本熟妇乱子伦xxxx | 动漫av网站免费观看 | 免费国产成人高清在线观看网站 | 亚洲日韩av一区二区三区四区 | 日本精品人妻无码免费大全 | 成在人线av无码免费 | 亚洲熟妇色xxxxx欧美老妇 | 欧美猛少妇色xxxxx | 国产香蕉97碰碰久久人人 | 无码av最新清无码专区吞精 | 国产一区二区不卡老阿姨 | 久久精品一区二区三区四区 | 激情五月综合色婷婷一区二区 | 无码一区二区三区在线观看 | 中文字幕人成乱码熟女app | 日日夜夜撸啊撸 | 日本爽爽爽爽爽爽在线观看免 | 国产人妻精品午夜福利免费 | 亚洲 a v无 码免 费 成 人 a v | 人人妻人人澡人人爽欧美一区 | 国产精品亚洲一区二区三区喷水 | 2020最新国产自产精品 | 中文字幕乱码人妻二区三区 | 99riav国产精品视频 | 亚洲国产av精品一区二区蜜芽 | 午夜成人1000部免费视频 | 网友自拍区视频精品 | 狠狠cao日日穞夜夜穞av | 国产亚洲精品久久久久久大师 | 国产网红无码精品视频 | 国产精品免费大片 | 无码国内精品人妻少妇 | 水蜜桃av无码 | 色一情一乱一伦一视频免费看 | 自拍偷自拍亚洲精品被多人伦好爽 | 中文字幕av日韩精品一区二区 | 亚洲精品欧美二区三区中文字幕 | 亚洲色无码一区二区三区 | www一区二区www免费 | 国产av一区二区精品久久凹凸 | 亚洲欧美日韩成人高清在线一区 | 亚洲精品国偷拍自产在线麻豆 | 国产suv精品一区二区五 | 无码人妻黑人中文字幕 | 在线成人www免费观看视频 | 2019午夜福利不卡片在线 | 欧美熟妇另类久久久久久不卡 | 丰满人妻一区二区三区免费视频 | 免费无码av一区二区 | 国产乱子伦视频在线播放 | 国产成人精品优优av | 欧洲极品少妇 | 亚洲呦女专区 | 人人爽人人澡人人高潮 | 中文字幕无码免费久久9一区9 | 久激情内射婷内射蜜桃人妖 | 久久久精品456亚洲影院 | 大肉大捧一进一出视频出来呀 | 内射白嫩少妇超碰 | 国产激情无码一区二区 | 国模大胆一区二区三区 | 无码午夜成人1000部免费视频 | 国产9 9在线 | 中文 | 亚洲日本一区二区三区在线 | 久久亚洲精品中文字幕无男同 | 国内精品人妻无码久久久影院蜜桃 | 久久久久久九九精品久 | 国产精品人人爽人人做我的可爱 | 男人扒开女人内裤强吻桶进去 | 国产在线精品一区二区三区直播 | 狠狠躁日日躁夜夜躁2020 | 精品偷拍一区二区三区在线看 | 免费观看黄网站 | 国产美女精品一区二区三区 | 中文字幕乱妇无码av在线 | 成熟女人特级毛片www免费 | av无码久久久久不卡免费网站 | 亚洲啪av永久无码精品放毛片 | 真人与拘做受免费视频一 | 精品人妻人人做人人爽夜夜爽 | 精品国产av色一区二区深夜久久 | 久久99精品久久久久婷婷 | 亚洲成a人片在线观看无码3d | 天天拍夜夜添久久精品大 | 乱码av麻豆丝袜熟女系列 | 免费国产成人高清在线观看网站 | 亚洲男人av天堂午夜在 | 亚洲s码欧洲m码国产av | 婷婷色婷婷开心五月四房播播 | 国产欧美精品一区二区三区 | 特黄特色大片免费播放器图片 | 国产另类ts人妖一区二区 | 18精品久久久无码午夜福利 | 成人aaa片一区国产精品 | 国精品人妻无码一区二区三区蜜柚 | 亚洲狠狠色丁香婷婷综合 | 亚洲 欧美 激情 小说 另类 | 欧美性猛交内射兽交老熟妇 | 国产在线一区二区三区四区五区 | 久久久久久av无码免费看大片 | 亚洲日韩乱码中文无码蜜桃臀网站 | 成熟女人特级毛片www免费 | 在线观看国产一区二区三区 | 99在线 | 亚洲 | 国产成人午夜福利在线播放 | 亚洲国产精品成人久久蜜臀 | 国产免费观看黄av片 | 色欲av亚洲一区无码少妇 | 亚洲欧洲日本综合aⅴ在线 | 国产亚洲精品久久久久久 | 日本丰满护士爆乳xxxx | 人人妻人人澡人人爽人人精品 | 久久精品99久久香蕉国产色戒 | 成人性做爰aaa片免费看不忠 | 成在人线av无码免观看麻豆 | 97色伦图片97综合影院 | 国产极品美女高潮无套在线观看 | av无码久久久久不卡免费网站 | 无码一区二区三区在线观看 | 一本色道婷婷久久欧美 | 日本精品人妻无码77777 天堂一区人妻无码 | 国产精品亚洲专区无码不卡 | 亚洲成熟女人毛毛耸耸多 | 欧美日韩亚洲国产精品 | 麻豆md0077饥渴少妇 | 亚洲欧美日韩综合久久久 | 欧美熟妇另类久久久久久多毛 | 国产麻豆精品一区二区三区v视界 | 国产精品第一国产精品 | 双乳奶水饱满少妇呻吟 | 香港三级日本三级妇三级 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 免费人成在线观看网站 | 粉嫩少妇内射浓精videos | 久久无码专区国产精品s | 国产精品手机免费 | 欧洲极品少妇 | 久久久精品人妻久久影视 | 亚洲国产av美女网站 | 一本大道伊人av久久综合 | 国产熟妇高潮叫床视频播放 | 免费人成在线视频无码 | 欧美熟妇另类久久久久久不卡 | 国产免费久久精品国产传媒 | 精品亚洲韩国一区二区三区 | 日韩少妇内射免费播放 | 少妇厨房愉情理9仑片视频 | 欧美日韩一区二区免费视频 | 中文字幕无码免费久久9一区9 | 97se亚洲精品一区 | 久久婷婷五月综合色国产香蕉 | 成 人 免费观看网站 | 国产精品高潮呻吟av久久4虎 | 欧美第一黄网免费网站 | 中文字幕无码日韩欧毛 | 欧美野外疯狂做受xxxx高潮 | 久久亚洲精品成人无码 | 又大又紧又粉嫩18p少妇 | 精品厕所偷拍各类美女tp嘘嘘 | 亚洲国产精品无码久久久久高潮 | 最新国产麻豆aⅴ精品无码 | 久久久久亚洲精品中文字幕 | 国产亚洲美女精品久久久2020 | a片在线免费观看 | 无码人妻久久一区二区三区不卡 | 内射欧美老妇wbb | 99麻豆久久久国产精品免费 | 丰满人妻翻云覆雨呻吟视频 | 亚洲无人区一区二区三区 | 久久五月精品中文字幕 | 18禁止看的免费污网站 | 麻豆成人精品国产免费 | 无码国内精品人妻少妇 | 免费观看激色视频网站 | 欧美三级不卡在线观看 | 国产精品久久久av久久久 | 欧美喷潮久久久xxxxx | 精品欧美一区二区三区久久久 | 亚洲大尺度无码无码专区 | 国产精品无码一区二区桃花视频 | 亚洲精品一区二区三区在线观看 | 国精产品一品二品国精品69xx | 国产精品久久精品三级 | 国内精品久久毛片一区二区 | 欧美老妇交乱视频在线观看 | 欧美黑人巨大xxxxx | 伊人色综合久久天天小片 | 丰满人妻被黑人猛烈进入 | 97精品人妻一区二区三区香蕉 | 亚洲一区二区三区播放 | 欧美成人午夜精品久久久 | 国产精品久久久久9999小说 | 扒开双腿疯狂进出爽爽爽视频 | 国产精品久久久av久久久 | 内射后入在线观看一区 | 天海翼激烈高潮到腰振不止 | 狠狠色欧美亚洲狠狠色www | 国产又爽又黄又刺激的视频 | 久久综合久久自在自线精品自 | 无码人妻黑人中文字幕 | 18禁止看的免费污网站 | 麻豆成人精品国产免费 | 女人被爽到呻吟gif动态图视看 | 久久婷婷五月综合色国产香蕉 | 国产婷婷色一区二区三区在线 | 精品午夜福利在线观看 | 在教室伦流澡到高潮hnp视频 | 欧美人与善在线com | 国产午夜亚洲精品不卡 | 狠狠色欧美亚洲狠狠色www | 精品国产aⅴ无码一区二区 | 国产激情精品一区二区三区 | 国产精品久久国产三级国 | 男人的天堂av网站 | 成 人 免费观看网站 | 图片小说视频一区二区 | 激情亚洲一区国产精品 | 美女张开腿让人桶 | 亚洲精品久久久久中文第一幕 | 天海翼激烈高潮到腰振不止 | 波多野结衣av一区二区全免费观看 | 三级4级全黄60分钟 | 亚洲春色在线视频 | 丰满诱人的人妻3 | 国产色视频一区二区三区 | 午夜精品久久久内射近拍高清 | av无码电影一区二区三区 | 激情内射日本一区二区三区 | 日本肉体xxxx裸交 | 欧美丰满熟妇xxxx | 丁香啪啪综合成人亚洲 | 国产三级久久久精品麻豆三级 | 无码av中文字幕免费放 | 久久综合给合久久狠狠狠97色 | 国内精品人妻无码久久久影院蜜桃 | 高潮毛片无遮挡高清免费 | 亚洲精品一区国产 | 无人区乱码一区二区三区 | 色婷婷久久一区二区三区麻豆 | 无码国产激情在线观看 | 亚洲欧洲中文日韩av乱码 | 国产偷国产偷精品高清尤物 | 老太婆性杂交欧美肥老太 | 装睡被陌生人摸出水好爽 | 国产精品二区一区二区aⅴ污介绍 | 久久精品女人的天堂av | 东京热一精品无码av | 一本色道婷婷久久欧美 | 中文字幕日韩精品一区二区三区 | 久久精品中文字幕大胸 | 国产成人无码午夜视频在线观看 | 丰满人妻被黑人猛烈进入 | 国内精品久久毛片一区二区 | 亚洲毛片av日韩av无码 | 亲嘴扒胸摸屁股激烈网站 | 亚洲色欲色欲天天天www | 亚洲欧洲日本综合aⅴ在线 | 欧美人与牲动交xxxx | 极品嫩模高潮叫床 | 日韩欧美成人免费观看 | 亚洲国产成人a精品不卡在线 | 久久精品女人天堂av免费观看 | 国产av人人夜夜澡人人爽麻豆 | 97久久国产亚洲精品超碰热 | 国产一区二区三区日韩精品 | 水蜜桃亚洲一二三四在线 | 狠狠cao日日穞夜夜穞av | 久久久精品国产sm最大网站 | 国产精品99爱免费视频 | 中文字幕人妻无码一区二区三区 | 无套内谢的新婚少妇国语播放 | 久久午夜无码鲁丝片午夜精品 | 性色欲网站人妻丰满中文久久不卡 | 国产午夜视频在线观看 | 成熟人妻av无码专区 | 国内少妇偷人精品视频免费 | 99久久99久久免费精品蜜桃 | 久久天天躁夜夜躁狠狠 | 少妇激情av一区二区 | 亚洲精品中文字幕 | 丰满护士巨好爽好大乳 | 精品国产福利一区二区 | 亚洲自偷自偷在线制服 | 欧美zoozzooz性欧美 | 日韩欧美中文字幕在线三区 | 成熟女人特级毛片www免费 | 午夜熟女插插xx免费视频 | 性生交大片免费看女人按摩摩 | 人妻无码久久精品人妻 | 帮老师解开蕾丝奶罩吸乳网站 | 综合激情五月综合激情五月激情1 | 亚洲色成人中文字幕网站 | 欧美国产日韩亚洲中文 | 国产精品-区区久久久狼 | 全黄性性激高免费视频 | 国产另类ts人妖一区二区 | 成人精品视频一区二区三区尤物 | 欧美喷潮久久久xxxxx | 中文字幕无码免费久久9一区9 | 在线精品亚洲一区二区 | 国产精品免费大片 | 7777奇米四色成人眼影 | 国产成人无码午夜视频在线观看 | 成人毛片一区二区 | 国产疯狂伦交大片 | 亚洲精品一区二区三区大桥未久 | 亚洲日韩av一区二区三区中文 | 青青青爽视频在线观看 | 狠狠色噜噜狠狠狠7777奇米 | 亚洲最大成人网站 | 国产精品香蕉在线观看 | 国产深夜福利视频在线 | 久久人人爽人人人人片 | 天天av天天av天天透 | 欧洲欧美人成视频在线 | 国产69精品久久久久app下载 | 激情亚洲一区国产精品 | 国产精品永久免费视频 | 人妻有码中文字幕在线 | а√天堂www在线天堂小说 | 亚洲人交乣女bbw | 性史性农村dvd毛片 | 免费看少妇作爱视频 | 捆绑白丝粉色jk震动捧喷白浆 | 粗大的内捧猛烈进出视频 | 97人妻精品一区二区三区 | 久久久久亚洲精品男人的天堂 | 色噜噜亚洲男人的天堂 | 老司机亚洲精品影院无码 | 亚洲欧美综合区丁香五月小说 | 在线 国产 欧美 亚洲 天堂 | 日韩精品乱码av一区二区 | 国色天香社区在线视频 | 又紧又大又爽精品一区二区 | 精品成在人线av无码免费看 | 麻花豆传媒剧国产免费mv在线 | 亚洲午夜无码久久 | 日韩精品乱码av一区二区 | 国精产品一品二品国精品69xx | 丰满诱人的人妻3 | 中文精品久久久久人妻不卡 | 毛片内射-百度 | 欧美zoozzooz性欧美 | 大乳丰满人妻中文字幕日本 | 亚洲成在人网站无码天堂 | 国产精品毛片一区二区 | 波多野42部无码喷潮在线 | 中国大陆精品视频xxxx | 中国大陆精品视频xxxx | 狠狠色丁香久久婷婷综合五月 | 亚洲综合无码一区二区三区 | 欧美freesex黑人又粗又大 | 性史性农村dvd毛片 | 国产午夜精品一区二区三区嫩草 | 性啪啪chinese东北女人 | 丝袜 中出 制服 人妻 美腿 | 麻豆国产丝袜白领秘书在线观看 | 无码任你躁久久久久久久 | 久久精品成人欧美大片 | 国产激情综合五月久久 | 精品久久久久久亚洲精品 | 天天躁夜夜躁狠狠是什么心态 | 国产亚洲精品精品国产亚洲综合 | 日韩人妻无码一区二区三区久久99 | 国产成人一区二区三区在线观看 | 老熟妇仑乱视频一区二区 | 亚洲日韩精品欧美一区二区 | 波多野结衣aⅴ在线 | 久久久精品欧美一区二区免费 | 免费男性肉肉影院 | 九九在线中文字幕无码 | 国产精品igao视频网 | 欧美人与禽猛交狂配 | 亚洲一区二区三区播放 | 久久久久久久久888 | 亚洲精品成人av在线 | 国产莉萝无码av在线播放 | 麻豆md0077饥渴少妇 | 国产69精品久久久久app下载 | av在线亚洲欧洲日产一区二区 | 国产又爽又猛又粗的视频a片 | 成人无码精品1区2区3区免费看 | 狠狠躁日日躁夜夜躁2020 | 国产黄在线观看免费观看不卡 | 中文字幕无码免费久久99 | 国产精品对白交换视频 | 四虎国产精品一区二区 | 妺妺窝人体色www在线小说 | 国产精品久久久久影院嫩草 | 久久久久国色av免费观看性色 | 中国女人内谢69xxxxxa片 | 国产偷自视频区视频 | 无码成人精品区在线观看 | 98国产精品综合一区二区三区 | 玩弄少妇高潮ⅹxxxyw | 色欲av亚洲一区无码少妇 | 成在人线av无码免观看麻豆 | √8天堂资源地址中文在线 | 大胆欧美熟妇xx | 国产午夜精品一区二区三区嫩草 | 东京热男人av天堂 | 色老头在线一区二区三区 | 亚洲欧洲日本无在线码 | 无码播放一区二区三区 | 亚洲中文字幕av在天堂 | 亚洲国产精华液网站w | 成人欧美一区二区三区 | 国产精品久久久久久亚洲毛片 | 香港三级日本三级妇三级 | 成人三级无码视频在线观看 | 国产精品美女久久久 | 国产精品人妻一区二区三区四 | 日本熟妇乱子伦xxxx | 亚洲 激情 小说 另类 欧美 | 宝宝好涨水快流出来免费视频 | 国产精品欧美成人 | 午夜免费福利小电影 | 亚洲欧美综合区丁香五月小说 | 激情爆乳一区二区三区 | 少妇人妻大乳在线视频 | 一本久道久久综合狠狠爱 | 麻豆蜜桃av蜜臀av色欲av | 亚洲呦女专区 | 少妇的肉体aa片免费 | 乱中年女人伦av三区 | 亚洲国产精品成人久久蜜臀 | 国产一区二区三区精品视频 | 日韩 欧美 动漫 国产 制服 | 亚洲爆乳大丰满无码专区 | 国产色在线 | 国产 | 国产在线精品一区二区三区直播 | 欧洲极品少妇 | 日本高清一区免费中文视频 | 国产精品亚洲а∨无码播放麻豆 | 国产免费无码一区二区视频 | 久久这里只有精品视频9 | 亚洲色无码一区二区三区 | 丰满岳乱妇在线观看中字无码 | 天天做天天爱天天爽综合网 | 亚洲欧洲日本无在线码 | 精品水蜜桃久久久久久久 | 欧美日韩视频无码一区二区三 | 久久99精品国产麻豆蜜芽 | 国产亚洲欧美日韩亚洲中文色 | 国产人妻精品一区二区三区 | 亚洲精品国产第一综合99久久 | 丰满人妻翻云覆雨呻吟视频 | 亚洲精品国偷拍自产在线麻豆 | 精品国产麻豆免费人成网站 | 国产精品亚洲五月天高清 | 久久久精品欧美一区二区免费 | 久久精品国产精品国产精品污 | av人摸人人人澡人人超碰下载 | 亚洲成色在线综合网站 | 亚洲另类伦春色综合小说 | 中文字幕无码人妻少妇免费 | 亚洲精品久久久久久久久久久 | 国产97人人超碰caoprom | 精品国产一区二区三区四区 | 香港三级日本三级妇三级 | 日本一区二区三区免费高清 | 色噜噜亚洲男人的天堂 | 午夜精品一区二区三区在线观看 | 对白脏话肉麻粗话av | 亚洲欧洲日本综合aⅴ在线 | 亚洲国产精品一区二区第一页 | 精品国产福利一区二区 | 人人澡人摸人人添 | 人妻aⅴ无码一区二区三区 | 少妇无套内谢久久久久 | 精品国产一区二区三区av 性色 | 丰满少妇人妻久久久久久 | 成人欧美一区二区三区 | 欧美色就是色 | 国产精品免费大片 | 久久久久久亚洲精品a片成人 | 在线精品亚洲一区二区 | 成人免费视频在线观看 | 欧美高清在线精品一区 | 中文字幕 亚洲精品 第1页 | 亚洲精品一区三区三区在线观看 | 亚洲国产精品久久久天堂 | 久久精品无码一区二区三区 | 啦啦啦www在线观看免费视频 | 久久www免费人成人片 | 欧美人与牲动交xxxx | 亚洲成av人片在线观看无码不卡 | 亚洲人交乣女bbw | 国产后入清纯学生妹 | 高清无码午夜福利视频 | 九九久久精品国产免费看小说 | 人人妻人人澡人人爽欧美一区九九 | 精品国产一区二区三区四区 | 亚洲综合无码一区二区三区 | 一二三四社区在线中文视频 | 1000部夫妻午夜免费 | 午夜精品久久久久久久久 | 国产乱人偷精品人妻a片 | 国产亚av手机在线观看 | 激情亚洲一区国产精品 | 久久久久成人精品免费播放动漫 | 日韩无套无码精品 | 精品一区二区三区无码免费视频 | 亚洲熟妇色xxxxx欧美老妇 | 中文精品久久久久人妻不卡 | 久久无码中文字幕免费影院蜜桃 | 亚洲精品国偷拍自产在线观看蜜桃 | 久久人人爽人人爽人人片ⅴ | 激情爆乳一区二区三区 | 在线观看国产午夜福利片 | 国产精品成人av在线观看 | 97久久国产亚洲精品超碰热 | 荫蒂被男人添的好舒服爽免费视频 | 少妇人妻大乳在线视频 | 蜜臀av在线播放 久久综合激激的五月天 | 亚洲国产午夜精品理论片 | 国产乱人无码伦av在线a | 兔费看少妇性l交大片免费 | 美女扒开屁股让男人桶 | 午夜福利不卡在线视频 | 亚洲人成网站在线播放942 | 精品成人av一区二区三区 | 日韩在线不卡免费视频一区 | av无码不卡在线观看免费 | 国产午夜视频在线观看 | 我要看www免费看插插视频 | 午夜丰满少妇性开放视频 | 2020久久超碰国产精品最新 | 黑人玩弄人妻中文在线 | 麻豆果冻传媒2021精品传媒一区下载 | 图片区 小说区 区 亚洲五月 | 国产熟妇另类久久久久 | 中文字幕人妻无码一夲道 | 久久国产劲爆∧v内射 | 色综合久久网 | 亚洲国产精品无码一区二区三区 | 熟女俱乐部五十路六十路av | 亚洲成a人片在线观看无码3d | 久久久久久久久蜜桃 | 少妇性l交大片 | 久久久久av无码免费网 | 国产午夜亚洲精品不卡下载 | 色综合久久中文娱乐网 | 男女性色大片免费网站 | 在线播放亚洲第一字幕 | 国产高清av在线播放 | 精品久久久久久人妻无码中文字幕 | 亚洲色www成人永久网址 | 久久久久av无码免费网 | 欧美激情一区二区三区成人 | 欧美肥老太牲交大战 | 一本无码人妻在中文字幕免费 | 亚洲精品国偷拍自产在线麻豆 | 精品成人av一区二区三区 | 亚洲中文字幕久久无码 | 亚洲日韩中文字幕在线播放 | 国产超级va在线观看视频 | 丰满少妇高潮惨叫视频 | 久久久av男人的天堂 | 免费观看黄网站 | 国内综合精品午夜久久资源 | 少妇人妻偷人精品无码视频 | 中文字幕人成乱码熟女app | 欧美成人免费全部网站 | 国产成人av免费观看 | 久久亚洲日韩精品一区二区三区 | 欧美日本精品一区二区三区 | 狠狠噜狠狠狠狠丁香五月 | 乌克兰少妇性做爰 | 999久久久国产精品消防器材 | 欧美日韩一区二区免费视频 | 亚洲综合久久一区二区 | 亚洲中文字幕va福利 | 熟女体下毛毛黑森林 | 亚洲 日韩 欧美 成人 在线观看 | 亚洲精品一区二区三区在线观看 | 成年美女黄网站色大免费全看 | 欧美黑人巨大xxxxx | 内射老妇bbwx0c0ck | 亚洲va中文字幕无码久久不卡 | а√天堂www在线天堂小说 | 国产绳艺sm调教室论坛 | 熟女少妇人妻中文字幕 | 99麻豆久久久国产精品免费 | 丝袜 中出 制服 人妻 美腿 | 国产在线aaa片一区二区99 | 欧美老熟妇乱xxxxx | 国产两女互慰高潮视频在线观看 | 国产亚洲精品久久久久久大师 | 精品国偷自产在线 | 色婷婷久久一区二区三区麻豆 | 免费网站看v片在线18禁无码 | 国产免费无码一区二区视频 | 国产精品18久久久久久麻辣 | 麻豆果冻传媒2021精品传媒一区下载 | 自拍偷自拍亚洲精品被多人伦好爽 | 精品国偷自产在线 | 国产成人精品无码播放 | 精品国产一区二区三区av 性色 | 欧美喷潮久久久xxxxx | 国产亚洲人成在线播放 | 色婷婷欧美在线播放内射 | 欧美日韩一区二区三区自拍 | 中文字幕人妻丝袜二区 | 国产三级精品三级男人的天堂 | 国产午夜福利100集发布 | 丰满岳乱妇在线观看中字无码 | 麻豆国产丝袜白领秘书在线观看 | 性色av无码免费一区二区三区 | 久久精品国产一区二区三区肥胖 | 丝袜足控一区二区三区 | 国产真人无遮挡作爱免费视频 | 亚洲精品一区二区三区在线观看 | 久久综合色之久久综合 | 波多野结衣 黑人 | 内射巨臀欧美在线视频 | 中文字幕日韩精品一区二区三区 | 国产亚洲精品久久久ai换 | 国产午夜精品一区二区三区嫩草 | 大胆欧美熟妇xx | 久久99精品国产.久久久久 | 久久久久免费精品国产 | 夜夜夜高潮夜夜爽夜夜爰爰 | 玩弄人妻少妇500系列视频 | 国产亚洲精品久久久闺蜜 | 永久免费观看美女裸体的网站 | 久久天天躁夜夜躁狠狠 | 精品人妻人人做人人爽夜夜爽 | 久久国产36精品色熟妇 | 爽爽影院免费观看 | 九九热爱视频精品 | 亚洲欧美精品aaaaaa片 | 99精品久久毛片a片 | а√资源新版在线天堂 | 国内丰满熟女出轨videos | 国产精品国产三级国产专播 | 国产精品爱久久久久久久 | 扒开双腿疯狂进出爽爽爽视频 | 色一情一乱一伦一视频免费看 | 久久精品国产日本波多野结衣 | 人人妻人人澡人人爽欧美一区 | 国产尤物精品视频 | 亚洲欧洲日本综合aⅴ在线 | 久久久久亚洲精品中文字幕 | 毛片内射-百度 | 99er热精品视频 | 国产综合久久久久鬼色 | 亚洲 高清 成人 动漫 | 国产人妻精品一区二区三区不卡 | 国产免费久久精品国产传媒 | 国产99久久精品一区二区 | 久久综合给合久久狠狠狠97色 | 小泽玛莉亚一区二区视频在线 | 九一九色国产 | 日日干夜夜干 | 国产精品福利视频导航 | 无码国产激情在线观看 | 欧美xxxx黑人又粗又长 | 99久久无码一区人妻 | 一本色道久久综合狠狠躁 | 丰满护士巨好爽好大乳 | 成人无码精品一区二区三区 | 精品久久久久香蕉网 | 国产又爽又猛又粗的视频a片 | 欧美35页视频在线观看 | 伊人久久大香线蕉亚洲 | 亚洲欧美日韩国产精品一区二区 | 国产欧美精品一区二区三区 | 两性色午夜免费视频 | 国产高清av在线播放 | 亚洲国产精品久久人人爱 | 精品无码国产一区二区三区av | 国产亚洲精品久久久久久久久动漫 | 在线观看国产一区二区三区 | 亚洲精品一区二区三区婷婷月 | 高潮毛片无遮挡高清免费 | 人妻少妇被猛烈进入中文字幕 | 亚洲精品成人福利网站 | 久久久久亚洲精品男人的天堂 | 国产综合色产在线精品 | 国产农村乱对白刺激视频 | 精品无码一区二区三区爱欲 | 性色av无码免费一区二区三区 | 久久午夜夜伦鲁鲁片无码免费 | 国产精品多人p群无码 | 色狠狠av一区二区三区 | 欧美人与牲动交xxxx | 国产亚洲精品精品国产亚洲综合 | 六十路熟妇乱子伦 | 免费看男女做好爽好硬视频 | 又湿又紧又大又爽a视频国产 | 久久精品人人做人人综合试看 | 亚洲天堂2017无码中文 | 欧美人与禽zoz0性伦交 | 国产麻豆精品精东影业av网站 | 欧美 日韩 亚洲 在线 | 日韩av无码一区二区三区不卡 | 一二三四社区在线中文视频 | 精品无码一区二区三区的天堂 | 水蜜桃亚洲一二三四在线 | 日韩欧美中文字幕公布 | 黑人玩弄人妻中文在线 | 永久免费精品精品永久-夜色 | 欧美丰满熟妇xxxx性ppx人交 | 国产亲子乱弄免费视频 | 少妇被黑人到高潮喷出白浆 | 国产97在线 | 亚洲 | 1000部夫妻午夜免费 | 久久熟妇人妻午夜寂寞影院 | 大乳丰满人妻中文字幕日本 | 国产精品欧美成人 | 国产精品无码久久av | 亚洲精品国产精品乱码不卡 | 中文字幕乱码亚洲无线三区 | 久久国内精品自在自线 | 中文无码成人免费视频在线观看 | 国产又粗又硬又大爽黄老大爷视 | 亚洲日本va午夜在线电影 | 无码人妻黑人中文字幕 | 99久久人妻精品免费一区 | 麻豆蜜桃av蜜臀av色欲av | 亚洲人成影院在线无码按摩店 | 性欧美大战久久久久久久 | 精品国产麻豆免费人成网站 | 精品 日韩 国产 欧美 视频 | 青春草在线视频免费观看 | 东京无码熟妇人妻av在线网址 | 人人超人人超碰超国产 | 强奷人妻日本中文字幕 | 欧美阿v高清资源不卡在线播放 | 好爽又高潮了毛片免费下载 | 亚洲成av人综合在线观看 | 波多野结衣一区二区三区av免费 | 亚洲国产成人a精品不卡在线 | 国产精品高潮呻吟av久久4虎 | 久久久亚洲欧洲日产国码αv | 国产精品久久国产三级国 | 欧美国产日韩久久mv | 国产乱人伦av在线无码 | 国产黄在线观看免费观看不卡 | 国产av一区二区三区最新精品 | 国产熟妇另类久久久久 | 蜜桃臀无码内射一区二区三区 | 欧美野外疯狂做受xxxx高潮 | 精品国产青草久久久久福利 | aⅴ在线视频男人的天堂 | √天堂资源地址中文在线 | 精品国产青草久久久久福利 | 国精产品一品二品国精品69xx | 中文精品无码中文字幕无码专区 | 成人综合网亚洲伊人 | 国产亚洲视频中文字幕97精品 | 人妻尝试又大又粗久久 | 国产 精品 自在自线 | 强开小婷嫩苞又嫩又紧视频 | 欧美老妇与禽交 | 欧美日本精品一区二区三区 | 国产va免费精品观看 | 丝袜人妻一区二区三区 | 亚洲精品国偷拍自产在线观看蜜桃 | 日韩av无码一区二区三区不卡 | 亚洲国产成人a精品不卡在线 | 精品水蜜桃久久久久久久 | 精品国产青草久久久久福利 | 伊人久久大香线蕉亚洲 | 亚洲国产精品毛片av不卡在线 | 欧美放荡的少妇 | 国产精品爱久久久久久久 | 三上悠亚人妻中文字幕在线 | 久久综合香蕉国产蜜臀av | 人人妻人人澡人人爽人人精品 | 亚洲s码欧洲m码国产av | 熟妇人妻激情偷爽文 | 水蜜桃亚洲一二三四在线 | 午夜性刺激在线视频免费 | 精品无码国产一区二区三区av | 在线a亚洲视频播放在线观看 | 人人澡人人透人人爽 | 日本一区二区三区免费高清 | 久久国内精品自在自线 | а√资源新版在线天堂 | 国产莉萝无码av在线播放 | 亚洲色成人中文字幕网站 | 亚洲精品久久久久avwww潮水 | 色 综合 欧美 亚洲 国产 | 欧美人与物videos另类 | 欧美日本日韩 | 一个人看的www免费视频在线观看 | 亚洲精品国产第一综合99久久 | 2020久久香蕉国产线看观看 | 少妇的肉体aa片免费 | 国产熟女一区二区三区四区五区 | 98国产精品综合一区二区三区 | a片免费视频在线观看 | 国产精品丝袜黑色高跟鞋 | 国产精品久久久久无码av色戒 | 人人妻人人澡人人爽人人精品浪潮 | 强辱丰满人妻hd中文字幕 | 精品无人国产偷自产在线 | 巨爆乳无码视频在线观看 | 国产激情无码一区二区 | 性欧美牲交在线视频 | 国产免费无码一区二区视频 | 亚洲欧美日韩国产精品一区二区 | 国产免费久久久久久无码 | 日本爽爽爽爽爽爽在线观看免 | 99麻豆久久久国产精品免费 | 国产亚洲精品精品国产亚洲综合 | 亚洲男人av香蕉爽爽爽爽 | 久久亚洲国产成人精品性色 | 欧美xxxxx精品 | 一本无码人妻在中文字幕免费 | 无码帝国www无码专区色综合 | 丰满少妇人妻久久久久久 | 少妇被黑人到高潮喷出白浆 | 天天拍夜夜添久久精品大 | 国产免费久久精品国产传媒 | 亚洲综合无码一区二区三区 | 国产特级毛片aaaaaaa高清 | 欧美人与禽zoz0性伦交 | 永久免费精品精品永久-夜色 | 久久久久99精品成人片 | 成 人 网 站国产免费观看 | 国产麻豆精品精东影业av网站 | 午夜福利一区二区三区在线观看 | 亚洲狠狠婷婷综合久久 | 九九综合va免费看 | 青青青手机频在线观看 | 亚洲人交乣女bbw | 久久久中文字幕日本无吗 | 久久久精品456亚洲影院 | 国产成人一区二区三区别 | 久久99久久99精品中文字幕 | 波多野结衣av在线观看 | 成人三级无码视频在线观看 | 日本精品少妇一区二区三区 | 精品夜夜澡人妻无码av蜜桃 | 亚洲乱亚洲乱妇50p | 国产精品美女久久久久av爽李琼 | 99久久精品午夜一区二区 | 国产精品亚洲а∨无码播放麻豆 | 少妇性荡欲午夜性开放视频剧场 | 国产精品毛多多水多 | 成人免费无码大片a毛片 | v一区无码内射国产 | 国产成人无码午夜视频在线观看 | 一二三四在线观看免费视频 | 成人无码精品1区2区3区免费看 | 中文字幕+乱码+中文字幕一区 | 欧美黑人乱大交 | 亚洲一区av无码专区在线观看 | 亚洲熟妇色xxxxx欧美老妇y | 国产精品无套呻吟在线 | 在线 国产 欧美 亚洲 天堂 | 国产内射爽爽大片视频社区在线 | 伊在人天堂亚洲香蕉精品区 | 亚洲精品一区二区三区四区五区 | 成 人影片 免费观看 | 亚洲毛片av日韩av无码 | 国产人妻人伦精品1国产丝袜 | 欧美日韩一区二区免费视频 | 天海翼激烈高潮到腰振不止 | 国产精品va在线观看无码 | 少妇愉情理伦片bd | 国产精品沙发午睡系列 | 国产一区二区三区精品视频 | 日本大香伊一区二区三区 | 一区二区三区高清视频一 | аⅴ资源天堂资源库在线 | 午夜福利试看120秒体验区 | 亚洲 欧美 激情 小说 另类 | 国产成人无码区免费内射一片色欲 | 妺妺窝人体色www婷婷 | www一区二区www免费 | 中文字幕精品av一区二区五区 | 婷婷色婷婷开心五月四房播播 | 福利一区二区三区视频在线观看 | 成人动漫在线观看 | 正在播放东北夫妻内射 | 人人妻人人澡人人爽人人精品浪潮 | 精品国产青草久久久久福利 | 在线视频网站www色 | 成人精品视频一区二区 | 最近的中文字幕在线看视频 | 亚洲狠狠婷婷综合久久 | 久久精品国产一区二区三区 | 欧美放荡的少妇 | 三上悠亚人妻中文字幕在线 | 男女超爽视频免费播放 | 男人扒开女人内裤强吻桶进去 | 性史性农村dvd毛片 | 日本一区二区三区免费高清 | 午夜精品一区二区三区的区别 | 高潮毛片无遮挡高清免费视频 | 色一情一乱一伦一区二区三欧美 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 波多野结衣乳巨码无在线观看 | 欧美色就是色 | 亚洲精品综合一区二区三区在线 | 欧美人与禽猛交狂配 | 国色天香社区在线视频 | 国内少妇偷人精品视频 | 综合激情五月综合激情五月激情1 | 野外少妇愉情中文字幕 | 欧美 亚洲 国产 另类 | 免费乱码人妻系列无码专区 | 国产超碰人人爽人人做人人添 | 小sao货水好多真紧h无码视频 | 狠狠色丁香久久婷婷综合五月 | 伊人久久大香线蕉av一区二区 | 熟妇人妻无乱码中文字幕 | 国产精品久久久久影院嫩草 | 亚洲精品久久久久久久久久久 | 国产农村乱对白刺激视频 | 男女爱爱好爽视频免费看 | 久久久久成人精品免费播放动漫 | 秋霞成人午夜鲁丝一区二区三区 | 人妻少妇精品久久 | 骚片av蜜桃精品一区 | 国产精品久久久久久久影院 | 亚洲娇小与黑人巨大交 | 久久久久久a亚洲欧洲av冫 | 日产精品高潮呻吟av久久 | 亚洲欧美精品伊人久久 | 色 综合 欧美 亚洲 国产 | 国产精品久久久久久久影院 | 天天拍夜夜添久久精品 | yw尤物av无码国产在线观看 | 天天拍夜夜添久久精品大 | 给我免费的视频在线观看 | 一个人免费观看的www视频 | 国产明星裸体无码xxxx视频 | 亚洲国产精品无码一区二区三区 | 人妻人人添人妻人人爱 | 国产亚洲日韩欧美另类第八页 | 欧美老妇与禽交 | 国产艳妇av在线观看果冻传媒 | 日韩av无码一区二区三区 | 少妇厨房愉情理9仑片视频 | 无遮挡国产高潮视频免费观看 | 男女超爽视频免费播放 | 亚洲色无码一区二区三区 | 97人妻精品一区二区三区 | 欧洲vodafone精品性 | 久久国产精品精品国产色婷婷 | 久久久无码中文字幕久... | 999久久久国产精品消防器材 | 在线欧美精品一区二区三区 | 88国产精品欧美一区二区三区 | 极品嫩模高潮叫床 | 欧美阿v高清资源不卡在线播放 | 色综合视频一区二区三区 | 亚洲a无码综合a国产av中文 | 亲嘴扒胸摸屁股激烈网站 | 色妞www精品免费视频 | 四虎影视成人永久免费观看视频 | 任你躁在线精品免费 | 蜜臀av无码人妻精品 | 国产香蕉尹人综合在线观看 | 亚洲区小说区激情区图片区 | 性生交大片免费看l | 亚洲熟女一区二区三区 | 波多野结衣av一区二区全免费观看 | 妺妺窝人体色www婷婷 | 影音先锋中文字幕无码 | 久久人人爽人人爽人人片av高清 | yw尤物av无码国产在线观看 | 无码精品国产va在线观看dvd | аⅴ资源天堂资源库在线 | 国产精品人人爽人人做我的可爱 | 日韩成人一区二区三区在线观看 | 久久久国产精品无码免费专区 | 国产精品多人p群无码 | 熟妇女人妻丰满少妇中文字幕 |