openCV中的findHomography函数分析以及RANSAC算法的详解(源代码分析)
本文將openCV中的RANSAC代碼全部挑選出來,進行分析和講解,以便大家更好的理解RANSAC算法。代碼我都試過,可以直接運行。
在計算機視覺和圖像處理等很多領域,都需要用到RANSAC算法。openCV中也有封裝好的RANSAC算法,以便于人們使用。關于RANSAC算法的一些應用,可以看我的另一篇博客:
利用SIFT和RANSAC算法(openCV框架)實現物體的檢測與定位,并求出變換矩陣(findFundamentalMat和findHomography的比較)
但是前幾天師弟在使用openCV自帶的RANSAC算法時,發現實驗的運行時間并不會隨著輸入數據的增加而增加,感覺和理論上的不太相符。所以我就花了點時間,把openCV中關于RANSAC的源代碼全部復制出來研究了一下。以便我們更加清晰的了解RANSAC算法的實際運行過程。
首先看兩個類
//模型估計的基類,提供了估計矩陣的各種虛函數 //置信度設為0。99 循環次數設置為了2000 class CvModelEstimator2 { public:CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions);virtual ~CvModelEstimator2();virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model )=0;//virtual bool runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model,// CvMat* mask, double confidence=0.99, int maxIters=2000 );virtual bool runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model,CvMat* mask, double threshold,double confidence=0.99, int maxIters=2000 );virtual bool refine( const CvMat*, const CvMat*, CvMat*, int ) { return true; }//virtual void setSeed( int64 seed );protected:virtual void computeReprojError( const CvMat* m1, const CvMat* m2,const CvMat* model, CvMat* error ) = 0;virtual int findInliers( const CvMat* m1, const CvMat* m2,const CvMat* model, CvMat* error,CvMat* mask, double threshold );virtual bool getSubset( const CvMat* m1, const CvMat* m2,CvMat* ms1, CvMat* ms2, int maxAttempts=1000 );virtual bool checkSubset( const CvMat* ms1, int count );CvRNG rng;int modelPoints;CvSize modelSize;int maxBasicSolutions;bool checkPartialSubsets; }; //單應矩陣估計的子類 class CvHomographyEstimator : public CvModelEstimator2 { public:CvHomographyEstimator( int modelPoints );virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model );virtual bool refine( const CvMat* m1, const CvMat* m2,CvMat* model, int maxIters );protected:virtual void computeReprojError( const CvMat* m1, const CvMat* m2,const CvMat* model, CvMat* error ); };上面的兩個類中,CvModelEstimator2是一個基類,從名字就可以看出,這個類是用來估計模型的??梢钥吹嚼锩嫣峁┝嗽S多虛函數,這些函數有許多,比如runRANSAC是利用RANSAC方法計算單應矩陣,而runLMeDS是利用LMeDS方法計算單應矩陣,我們這里僅僅講解RANSAC方法,所以其他不需要的內容我就直接注釋掉了CvHomographyEstimator繼承自CvModelEstimator2,同樣的,從名字也就可以看出,這個類使用來估計單應矩陣的。
接下來是兩個類的構造函數和析構函數,這個沒啥好說的了,基本都是默認的。
<pre name="code" class="cpp">//構造函數 CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions) {modelPoints = _modelPoints;modelSize = _modelSize;maxBasicSolutions = _maxBasicSolutions;checkPartialSubsets = true;rng = cvRNG(-1); } //析構函數 CvModelEstimator2::~CvModelEstimator2() { }CvHomographyEstimator::CvHomographyEstimator(int _modelPoints): CvModelEstimator2(_modelPoints, cvSize(3,3), 1) {assert( _modelPoints == 4 || _modelPoints == 5 );checkPartialSubsets = false;}接下來到重點了。runRANSAC方法就是通過RANSAC來計算矩陣 <pre name="code" class="cpp">bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model,CvMat* mask0, double reprojThreshold,double confidence, int maxIters ) {bool result = false;cv::Ptr<CvMat> mask = cvCloneMat(mask0); //標記矩陣,標記內點和外點cv::Ptr<CvMat> models, err, tmask;cv::Ptr<CvMat> ms1, ms2;int iter, niters = maxIters; //這是迭代次數,默認最大的迭代次數為2000次int count = m1->rows*m1->cols, maxGoodCount = 0;CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );if( count < modelPoints ) //使用RANSAC算法時,modelPoints為4return false;models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );err = cvCreateMat( 1, count, CV_32FC1 );tmask = cvCreateMat( 1, count, CV_8UC1 );if( count > modelPoints ){ms1 = cvCreateMat( 1, modelPoints, m1->type );ms2 = cvCreateMat( 1, modelPoints, m2->type );}else{niters = 1;ms1 = cvCloneMat(m1);ms2 = cvCloneMat(m2);}for( iter = 0; iter < niters; iter++ ){int i, goodCount, nmodels;if( count > modelPoints ){bool found = getSubset( m1, m2, ms1, ms2, 300 );//調用函數,300是循環次數,這個函數if( !found ) //就是為了從序列中隨機選取4組,以便{ //以便下一步計算單應矩陣if( iter == 0 )return false;break;}}printf("------");nmodels = runKernel( ms1, ms2, models );//這個函數是通過給定的4組序列計算出矩陣if( nmodels <= 0 )continue;for( i = 0; i < nmodels; i++ ){CvMat model_i;cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold );//輸出看看一共循環了多少次printf("%5d %5d %5d %5d\n",iter,niters,goodCount,maxGoodCount);if( goodCount > MAX(maxGoodCount, modelPoints-1) ){std::swap(tmask, mask);cvCopy( &model_i, model );maxGoodCount = goodCount;//循環的次數會發生變化,原來原因在這里niters = cvRANSACUpdateNumIters( confidence,(double)(count - goodCount)/count, modelPoints, niters );}}}//printf("RANSAC算法實際循環了%d次\n",niters);if( maxGoodCount > 0 ){if( mask != mask0 )cvCopy( mask, mask0 );result = true;}return result; }
在這個函數參數中,輸入的m1和m2是兩個對應的序列,這兩組序列的每一對數據一一匹配,其中既有正確的匹配,也有錯誤的匹配,正確的可以稱為內點,錯誤的稱為外點,RANSAC方法就是從這些包含錯誤匹配的數據中,分離出正確的匹配,并且求得單應矩陣。model就是我們需要求解的單應矩陣,mask我們可以稱為標記矩陣,他和m1,m2的長度一樣,當一個m1和m2中的點為內點時,mask相應的標記為1,反之為0,說白了,通過mask我們最終可以知道序列中哪些是內點,哪些是外點。reprojThreshold為閾值,當某一個匹配與估計的假設小于閾值時,則被認為是一個內點,這個閾值,openCV默認給的是3,后期使用的時候自己也可以修改。confidence為置信度,其實也就是人為的規定了一個數值,這個數值可以大致表示RANSAC結果的準確性,這個具體有啥用后面咱們再說。這個值初始時被設置為0.995.?maxIters為初始迭代次數,RANSAC算法核心就是不斷的迭代,這個值就是迭代的次數,默認設為了2000
這個函數的前期,主要是設置了一些變量然后賦初值,然后轉換相應的格式等等。最關鍵的部分,是那個for循環。我們把這個for循環單獨拿出來分析一下。代碼如下。
for( iter = 0; iter < niters; iter++ ){int i, goodCount, nmodels;if( count > modelPoints ){bool found = getSubset( m1, m2, ms1, ms2, 300 );//調用函數,300是循環次數,這個函數if( !found ) //就是為了從序列中隨機選取4組,以便{ //以便下一步計算單應矩陣if( iter == 0 )return false;break;}} nmodels = runKernel( ms1, ms2, models );//這個函數是通過給定的4組序列計算出矩陣if( nmodels <= 0 )continue;for( i = 0; i < nmodels; i++ ){CvMat model_i;cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold );//輸出看看一共循環了多少次printf("%5d %5d %5d %5d\n",iter,niters,goodCount,maxGoodCount);if( goodCount > MAX(maxGoodCount, modelPoints-1) ){std::swap(tmask, mask);cvCopy( &model_i, model );maxGoodCount = goodCount;//循環的次數會發生變化,原來原因在這里niters = cvRANSACUpdateNumIters( confidence,(double)(count - goodCount)/count, modelPoints, niters );}}}niters最初的值為2000,這就是初始時的RANSAC算法的循環次數,getSubset()函數是從一組對應的序列中隨機的選出4組(因為要想計算出一個3X3的矩陣,至少需要4組對應的坐標),m1和m2是我們輸入序列,ms1和ms2是隨機選出的對應的4組匹配。
隨機的選出4組匹配后,就應該根據這4個匹配計算相應的矩陣,所以函數runKernel()就是根據4組匹配計算矩陣,參數里的models就是得到的矩陣。這個矩陣只是一個假設,為了驗證這個假設,需要用其他的點去計算,看看其他的點是內點還是外點。
findInliers()函數就是用來計算內點的。利用前面得到的矩陣,把所有的序列帶入,計算得出哪些是內點,哪些是外點,函數的返回值為goodCount,就是此次計算的內點的個數。函數中還有一個值為maxGoodCount,每次循環的內點個數的最大值保存在這個值中,一個估計的矩陣如果有越多的內點,那么這個矩陣就越有可能是正確的。所以計算內點個數以后,緊接著判斷一下goodCount和maxGoodCount的大小關系,如果goodCount>maxGoodCount,則把goodCount賦值給maxGoodCount。賦值之后的一行代碼非常關鍵,我們單獨拿出來說一下,代碼如下:
niters = cvRANSACUpdateNumIters( confidence,(double)(count - goodCount)/count, modelPoints, niters );niters本來是迭代的次數,也就是循環的次數。但是通過這行代碼我們發現,每次循環后,都會對niters這個值進行更新,也就是每次循環后都會改變循環的總次數。cvRANSACUpdateNumIters()函數利用confidence(置信度)count(總匹配個數)goodCount(當前內點個數)niters(當前的總迭代次數)這幾個參數,來動態的改變總迭代次數的大小。該函數的中心思想就是當內點占的比例較多時,那么很有可能已經找到了正確的估計,所以就適當的減少迭代次數來節省時間。這個迭代次數的減少是以指數形式減少的,所以節省的時間開銷也是非常的可觀。因此最初設計的2000的迭代次數,可能最終的迭代次數只有幾十。同樣的,如果你自己一開始把迭代次數設置成10000或者更大,進過幾次迭代后,niters又會變得非常小了。所以初始時的niters設置的再大,其實對最終的運行時間也沒什么影響。我用我自己的程序簡答試了一下,無論初值設為2000,10000,20000,最終的迭代次數都變成了58!!!所以,們現在應該清楚為什么輸入數據增加,而算法運行時間不會增加了。openCV的RANSAC算法首先把迭代的次數設置為2000,然后再迭代的過程中,動態的改變總迭代次數,無論輸入數據有多少,總的迭代次數不會增加,并且通過4個匹配計算出估計的矩陣這個時間是不變的,通過估計矩陣來計算內點,這方面的增加的時間開銷基本上可以忽略。所以導致的最終結果就是,無論輸入點有多少,運算時間基本不會有太大變化。
以上就是RANSAC算法的核心代碼,其中用到的一些函數,下面一一給出。
1. 轉換為齊次左邊,看上去很長,但是完成的功能就是把一般的坐標轉換成齊次坐標以方便以后的計算
CV_IMPL void cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ) {Ptr<CvMat> temp, denom;int i, s_count, s_dims, d_count, d_dims;CvMat _src, _dst, _ones;CvMat* ones = 0;if( !CV_IS_MAT(src) )CV_Error( !src ? CV_StsNullPtr : CV_StsBadArg,"The input parameter is not a valid matrix" );if( !CV_IS_MAT(dst) )CV_Error( !dst ? CV_StsNullPtr : CV_StsBadArg,"The output parameter is not a valid matrix" );if( src == dst || src->data.ptr == dst->data.ptr ){if( src != dst && (!CV_ARE_TYPES_EQ(src, dst) || !CV_ARE_SIZES_EQ(src,dst)) )CV_Error( CV_StsBadArg, "Invalid inplace operation" );return;}if( src->rows > src->cols ){if( !((src->cols > 1) ^ (CV_MAT_CN(src->type) > 1)) )CV_Error( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" );s_dims = CV_MAT_CN(src->type)*src->cols;s_count = src->rows;}else{if( !((src->rows > 1) ^ (CV_MAT_CN(src->type) > 1)) )CV_Error( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" );s_dims = CV_MAT_CN(src->type)*src->rows;s_count = src->cols;}if( src->rows == 1 || src->cols == 1 )src = cvReshape( src, &_src, 1, s_count );if( dst->rows > dst->cols ){if( !((dst->cols > 1) ^ (CV_MAT_CN(dst->type) > 1)) )CV_Error( CV_StsBadSize,"Either the number of channels or columns or rows in the input matrix must be =1" );d_dims = CV_MAT_CN(dst->type)*dst->cols;d_count = dst->rows;}else{if( !((dst->rows > 1) ^ (CV_MAT_CN(dst->type) > 1)) )CV_Error( CV_StsBadSize,"Either the number of channels or columns or rows in the output matrix must be =1" );d_dims = CV_MAT_CN(dst->type)*dst->rows;d_count = dst->cols;}if( dst->rows == 1 || dst->cols == 1 )dst = cvReshape( dst, &_dst, 1, d_count );if( s_count != d_count )CV_Error( CV_StsUnmatchedSizes, "Both matrices must have the same number of points" );if( CV_MAT_DEPTH(src->type) < CV_32F || CV_MAT_DEPTH(dst->type) < CV_32F )CV_Error( CV_StsUnsupportedFormat,"Both matrices must be floating-point (single or double precision)" );if( s_dims < 2 || s_dims > 4 || d_dims < 2 || d_dims > 4 )CV_Error( CV_StsOutOfRange,"Both input and output point dimensionality must be 2, 3 or 4" );if( s_dims < d_dims - 1 || s_dims > d_dims + 1 )CV_Error( CV_StsUnmatchedSizes,"The dimensionalities of input and output point sets differ too much" );if( s_dims == d_dims - 1 ){if( d_count == dst->rows ){ones = cvGetSubRect( dst, &_ones, cvRect( s_dims, 0, 1, d_count ));dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, s_dims, d_count ));}else{ones = cvGetSubRect( dst, &_ones, cvRect( 0, s_dims, d_count, 1 ));dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, d_count, s_dims ));}}if( s_dims <= d_dims ){if( src->rows == dst->rows && src->cols == dst->cols ){if( CV_ARE_TYPES_EQ( src, dst ) )cvCopy( src, dst );elsecvConvert( src, dst );}else{if( !CV_ARE_TYPES_EQ( src, dst )){temp = cvCreateMat( src->rows, src->cols, dst->type );cvConvert( src, temp );src = temp;}cvTranspose( src, dst );}if( ones )cvSet( ones, cvRealScalar(1.) );}else{int s_plane_stride, s_stride, d_plane_stride, d_stride, elem_size;if( !CV_ARE_TYPES_EQ( src, dst )){temp = cvCreateMat( src->rows, src->cols, dst->type );cvConvert( src, temp );src = temp;}elem_size = CV_ELEM_SIZE(src->type);if( s_count == src->cols )s_plane_stride = src->step / elem_size, s_stride = 1;elses_stride = src->step / elem_size, s_plane_stride = 1;if( d_count == dst->cols )d_plane_stride = dst->step / elem_size, d_stride = 1;elsed_stride = dst->step / elem_size, d_plane_stride = 1;denom = cvCreateMat( 1, d_count, dst->type );if( CV_MAT_DEPTH(dst->type) == CV_32F ){const float* xs = src->data.fl;const float* ys = xs + s_plane_stride;const float* zs = 0;const float* ws = xs + (s_dims - 1)*s_plane_stride;float* iw = denom->data.fl;float* xd = dst->data.fl;float* yd = xd + d_plane_stride;float* zd = 0;if( d_dims == 3 ){zs = ys + s_plane_stride;zd = yd + d_plane_stride;}for( i = 0; i < d_count; i++, ws += s_stride ){float t = *ws;iw[i] = fabs((double)t) > FLT_EPSILON ? t : 1.f;}cvDiv( 0, denom, denom );if( d_dims == 3 )for( i = 0; i < d_count; i++ ){float w = iw[i];float x = *xs * w, y = *ys * w, z = *zs * w;xs += s_stride; ys += s_stride; zs += s_stride;*xd = x; *yd = y; *zd = z;xd += d_stride; yd += d_stride; zd += d_stride;}elsefor( i = 0; i < d_count; i++ ){float w = iw[i];float x = *xs * w, y = *ys * w;xs += s_stride; ys += s_stride;*xd = x; *yd = y;xd += d_stride; yd += d_stride;}}else{const double* xs = src->data.db;const double* ys = xs + s_plane_stride;const double* zs = 0;const double* ws = xs + (s_dims - 1)*s_plane_stride;double* iw = denom->data.db;double* xd = dst->data.db;double* yd = xd + d_plane_stride;double* zd = 0;if( d_dims == 3 ){zs = ys + s_plane_stride;zd = yd + d_plane_stride;}for( i = 0; i < d_count; i++, ws += s_stride ){double t = *ws;iw[i] = fabs(t) > DBL_EPSILON ? t : 1.;}cvDiv( 0, denom, denom );if( d_dims == 3 )for( i = 0; i < d_count; i++ ){double w = iw[i];double x = *xs * w, y = *ys * w, z = *zs * w;xs += s_stride; ys += s_stride; zs += s_stride;*xd = x; *yd = y; *zd = z;xd += d_stride; yd += d_stride; zd += d_stride;}elsefor( i = 0; i < d_count; i++ ){double w = iw[i];double x = *xs * w, y = *ys * w;xs += s_stride; ys += s_stride;*xd = x; *yd = y;xd += d_stride; yd += d_stride;}}} }2. 對迭代值進行更新的函數。這個函數就是對總的迭代次數進行更新,從中可以看到,迭代值以指數形式減少。最初的為2000的迭代次數,有的時候可能經過不斷的更新,最終結果成了幾十了。 CV_IMPL int cvRANSACUpdateNumIters( double p, double ep,int model_points, int max_iters ) {if( model_points <= 0 )CV_Error( CV_StsOutOfRange, "the number of model points should be positive" );p = MAX(p, 0.);p = MIN(p, 1.);ep = MAX(ep, 0.);ep = MIN(ep, 1.);// avoid inf's & nan'sdouble num = MAX(1. - p, DBL_MIN);double denom = 1. - pow(1. - ep,model_points);if( denom < DBL_MIN )return 0;num = log(num);denom = log(denom);return denom >= 0 || -num >= max_iters*(-denom) ?max_iters : cvRound(num/denom); }
3. 通過4個匹配,計算單應矩陣,就是給你了4個匹配,你把和這四個匹配相符的矩陣計算出來 //通過四個匹配,計算符合要求的單應矩陣 int CvHomographyEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* H ) {int i, count = m1->rows*m1->cols;const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr;const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr;double LtL[9][9], W[9][1], V[9][9];CvMat _LtL = cvMat( 9, 9, CV_64F, LtL );CvMat matW = cvMat( 9, 1, CV_64F, W );CvMat matV = cvMat( 9, 9, CV_64F, V );CvMat _H0 = cvMat( 3, 3, CV_64F, V[8] );CvMat _Htemp = cvMat( 3, 3, CV_64F, V[7] );CvPoint2D64f cM={0,0}, cm={0,0}, sM={0,0}, sm={0,0};for( i = 0; i < count; i++ ){cm.x += m[i].x; cm.y += m[i].y;cM.x += M[i].x; cM.y += M[i].y;}cm.x /= count; cm.y /= count;cM.x /= count; cM.y /= count;for( i = 0; i < count; i++ ){sm.x += fabs(m[i].x - cm.x);sm.y += fabs(m[i].y - cm.y);sM.x += fabs(M[i].x - cM.x);sM.y += fabs(M[i].y - cM.y);}if( fabs(sm.x) < DBL_EPSILON || fabs(sm.y) < DBL_EPSILON ||fabs(sM.x) < DBL_EPSILON || fabs(sM.y) < DBL_EPSILON )return 0;sm.x = count/sm.x; sm.y = count/sm.y;sM.x = count/sM.x; sM.y = count/sM.y;double invHnorm[9] = { 1./sm.x, 0, cm.x, 0, 1./sm.y, cm.y, 0, 0, 1 };double Hnorm2[9] = { sM.x, 0, -cM.x*sM.x, 0, sM.y, -cM.y*sM.y, 0, 0, 1 };CvMat _invHnorm = cvMat( 3, 3, CV_64FC1, invHnorm );CvMat _Hnorm2 = cvMat( 3, 3, CV_64FC1, Hnorm2 );cvZero( &_LtL );for( i = 0; i < count; i++ ){double x = (m[i].x - cm.x)*sm.x, y = (m[i].y - cm.y)*sm.y;double X = (M[i].x - cM.x)*sM.x, Y = (M[i].y - cM.y)*sM.y;double Lx[] = { X, Y, 1, 0, 0, 0, -x*X, -x*Y, -x };double Ly[] = { 0, 0, 0, X, Y, 1, -y*X, -y*Y, -y };int j, k;for( j = 0; j < 9; j++ )for( k = j; k < 9; k++ )LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k];}cvCompleteSymm( &_LtL );//cvSVD( &_LtL, &matW, 0, &matV, CV_SVD_MODIFY_A + CV_SVD_V_T );cvEigenVV( &_LtL, &matV, &matW );cvMatMul( &_invHnorm, &_H0, &_Htemp );cvMatMul( &_Htemp, &_Hnorm2, &_H0 );cvConvertScale( &_H0, H, 1./_H0.data.db[8] );return 1; }
4. 給定輸入序列后,從中隨機的選出4對匹配 bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2,CvMat* ms1, CvMat* ms2, int maxAttempts ) //maxAttempts被設為300 {cv::AutoBuffer<int> _idx(modelPoints);int* idx = _idx;int i = 0, j, k, idx_i, iters = 0;int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type);const int *m1ptr = m1->data.i, *m2ptr = m2->data.i;int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i;int count = m1->cols*m1->rows;assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) );elemSize /= sizeof(int);for(; iters < maxAttempts; iters++){for( i = 0; i < modelPoints && iters < maxAttempts; ){idx[i] = idx_i = cvRandInt(&rng) % count; //產生count以內的隨機數,count是序列長度for( j = 0; j < i; j++ ) //保證產生的隨機數沒有重復的if( idx_i == idx[j] )break;if( j < i )continue;for( k = 0; k < elemSize; k++ ){ ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k]; //把隨機產生的數給了ms1和ms2ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k];}if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 ))) //調用函數checkSubset{iters++;continue;}i++;}if( !checkPartialSubsets && i == modelPoints &&(!checkSubset( ms1, i ) || !checkSubset( ms2, i )))continue;break;}return i == modelPoints && iters < maxAttempts; }
5. 對生成的4組匹配進行檢驗,觀察其是否合乎要求。 bool CvModelEstimator2::checkSubset( const CvMat* m, int count ) {int j, k, i, i0, i1;CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr;assert( CV_MAT_TYPE(m->type) == CV_64FC2 );if( checkPartialSubsets )i0 = i1 = count - 1;elsei0 = 0, i1 = count - 1;for( i = i0; i <= i1; i++ ){// check that the i-th selected point does not belong// to a line connecting some previously selected pointsfor( j = 0; j < i; j++ ){double dx1 = ptr[j].x - ptr[i].x;double dy1 = ptr[j].y - ptr[i].y;for( k = 0; k < j; k++ ){double dx2 = ptr[k].x - ptr[i].x;double dy2 = ptr[k].y - ptr[i].y;if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))break;}if( k < j )break;}if( j < i )break;}return i >= i1; }6. 計算內點的個數并且標記序列中哪些點是內點。 int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2,const CvMat* model, CvMat* _err,CvMat* _mask, double threshold ) {int i, count = _err->rows*_err->cols, goodCount = 0;const float* err = _err->data.fl;uchar* mask = _mask->data.ptr;computeReprojError( m1, m2, model, _err ); //_err里面是計算后的矩陣的大小,用于與閾值比較threshold *= threshold;for( i = 0; i < count; i++ )goodCount += mask[i] = err[i] <= threshold;//goodCount為計算出的內點的個數return goodCount; }
7.上面的函數調用的一些函數,這些函數不難,所以下面相應的列舉一下 bool CvHomographyEstimator::refine( const CvMat* m1, const CvMat* m2, CvMat* model, int maxIters ) {CvLevMarq solver(8, 0, cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, maxIters, DBL_EPSILON));int i, j, k, count = m1->rows*m1->cols;const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr;const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr;CvMat modelPart = cvMat( solver.param->rows, solver.param->cols, model->type, model->data.ptr );cvCopy( &modelPart, solver.param );for(;;){const CvMat* _param = 0;CvMat *_JtJ = 0, *_JtErr = 0;double* _errNorm = 0;if( !solver.updateAlt( _param, _JtJ, _JtErr, _errNorm ))break;for( i = 0; i < count; i++ ){const double* h = _param->data.db;double Mx = M[i].x, My = M[i].y;double ww = h[6]*Mx + h[7]*My + 1.;ww = fabs(ww) > DBL_EPSILON ? 1./ww : 0;double _xi = (h[0]*Mx + h[1]*My + h[2])*ww;double _yi = (h[3]*Mx + h[4]*My + h[5])*ww;double err[] = { _xi - m[i].x, _yi - m[i].y };if( _JtJ || _JtErr ){double J[][8] ={{ Mx*ww, My*ww, ww, 0, 0, 0, -Mx*ww*_xi, -My*ww*_xi },{ 0, 0, 0, Mx*ww, My*ww, ww, -Mx*ww*_yi, -My*ww*_yi }};for( j = 0; j < 8; j++ ){for( k = j; k < 8; k++ )_JtJ->data.db[j*8+k] += J[0][j]*J[0][k] + J[1][j]*J[1][k];_JtErr->data.db[j] += J[0][j]*err[0] + J[1][j]*err[1];}}if( _errNorm )*_errNorm += err[0]*err[0] + err[1]*err[1];}}cvCopy( solver.param, &modelPart );return true; }void CvHomographyEstimator::computeReprojError( const CvMat* m1, const CvMat* m2,const CvMat* model, CvMat* _err ) {int i, count = m1->rows*m1->cols;const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr;const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr;const double* H = model->data.db;float* err = _err->data.fl;for( i = 0; i < count; i++ ){double ww = 1./(H[6]*M[i].x + H[7]*M[i].y + 1.);double dx = (H[0]*M[i].x + H[1]*M[i].y + H[2])*ww - m[i].x;double dy = (H[3]*M[i].x + H[4]*M[i].y + H[5])*ww - m[i].y;err[i] = (float)(dx*dx + dy*dy);} }
8,最后一部分是比較關鍵的。就是FindHomography函數本身。這個函數又去調用了cvFindHomography函數,估計就是openCV不同版本的函數吧,其實現的功能和思想都是一樣的。這個函數內部基本上也就是做一些判斷防止溢出,排查錯誤,檢驗變量以及變換格式等輔助性的內容,真正的方法性質的代碼還是在上面的提到的CvHomographyEstimator類中。 cv::Mat findHomography( InputArray _points1, InputArray _points2,int method, double ransacReprojThreshold, OutputArray _mask) {Mat points1 = _points1.getMat(), points2 = _points2.getMat();int npoints = points1.checkVector(2);//返回矩陣的序列個數CV_Assert( npoints >= 0 && points2.checkVector(2) == npoints &&points1.type() == points2.type()); //檢驗初始條件是否正確Mat H(3, 3, CV_64F);CvMat _pt1 = points1, _pt2 = points2;CvMat matH = H, c_mask, *p_mask = 0;if( _mask.needed() ){_mask.create(npoints, 1, CV_8U, -1, true);p_mask = &(c_mask = _mask.getMat());}bool ok = cvFindHomography( &_pt1, &_pt2, &matH, method, ransacReprojThreshold, p_mask ) > 0; //函數調用if( !ok )H = Scalar(0);return H; }CV_IMPL int cvFindHomography( const CvMat* objectPoints, const CvMat* imagePoints,CvMat* __H, int method, double ransacReprojThreshold,CvMat* mask ) {const double confidence = 0.995;const int maxIters = 2000; //修改這里來修改迭代次數const double defaultRANSACReprojThreshold = 3;bool result = false;Ptr<CvMat> m, M, tempMask;double H[9];CvMat matH = cvMat( 3, 3, CV_64FC1, H ); //這就是單應矩陣,矩陣初始化int count; CV_Assert( CV_IS_MAT(imagePoints) && CV_IS_MAT(objectPoints) );count = MAX(imagePoints->cols, imagePoints->rows); //序列個數CV_Assert( count >= 4 );if( ransacReprojThreshold <= 0 )ransacReprojThreshold = defaultRANSACReprojThreshold;m = cvCreateMat( 1, count, CV_64FC2 );cvConvertPointsHomogeneous( imagePoints, m ); //轉換齊次坐標M = cvCreateMat( 1, count, CV_64FC2 );cvConvertPointsHomogeneous( objectPoints, M );if( mask ){CV_Assert( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) &&(mask->rows == 1 || mask->cols == 1) &&mask->rows*mask->cols == count );}if( mask || count > 4 )tempMask = cvCreateMat( 1, count, CV_8U );if( !tempMask.empty() )cvSet( tempMask, cvScalarAll(1.) );CvHomographyEstimator estimator( MIN(count, 4) ); //參數是一個小于等于4的值,只有大于4,才能用RANSAC計算if( count == 4 )method = 0;if( method == CV_LMEDS )//result = estimator.runLMeDS( M, m, &matH, tempMask, confidence, maxIters );printf("");else if( method == CV_RANSAC )result = estimator.runRANSAC( M, m, &matH, tempMask, ransacReprojThreshold, confidence, maxIters);elseresult = estimator.runKernel( M, m, &matH ) > 0;if( result && count > 4 ){icvCompressPoints( (CvPoint2D64f*)M->data.ptr, tempMask->data.ptr, 1, count ); //壓縮,使序列緊湊count = icvCompressPoints( (CvPoint2D64f*)m->data.ptr, tempMask->data.ptr, 1, count );M->cols = m->cols = count; //篩選過后,這個count是內點的個數if( method == CV_RANSAC )estimator.runKernel( M, m, &matH ); //重新計算最終的單應矩陣,matHestimator.refine( M, m, &matH, 10 );}if( result )cvConvert( &matH, __H );if( mask && tempMask ){if( CV_ARE_SIZES_EQ(mask, tempMask) ) //復制這個矩陣cvCopy( tempMask, mask );elsecvTranspose( tempMask, mask ); //行列調換的 復制這個矩陣}return (int)result; }
?
總結
以上是生活随笔為你收集整理的openCV中的findHomography函数分析以及RANSAC算法的详解(源代码分析)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 利用SIFT和RANSAC算法(open
- 下一篇: max7219驱动共阳点阵