久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

预训练模型transformers综合总结(一)

發布時間:2025/3/21 编程问答 15 豆豆
生活随笔 收集整理的這篇文章主要介紹了 预训练模型transformers综合总结(一) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

預訓練模型transformers綜合總結(一)

這是我對transformers庫查看了原始文檔后,進行的學習總結。

第一部分是將如何調用加載本地模型,使用模型,修改模型,保存模型

之后還會更新如何使用自定義的數據集訓練以及對模型進行微調,感覺這樣這個庫基本就能玩熟了。


# 加載本地模型須知

*?1.使用transformers庫加載預訓練模型,99%的時間都是用于模型的下載。
為此,我直接從清華大學軟件("https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models/")把模型放在了我的本地目錄地址:"H:\\code\\Model\\"下,這里可以進行修改。
*?2.下載的模型通常會是"模型名稱-"+"config.json"的格式例如(bert-base-cased-finetuned-mrpc-config.json),但如果使用transformers庫加載本地模型,需要的是模型路徑中是config.json、vocab.txt、pytorch_model.bin、tf_model.h5、tokenizer.json等形式,為此在加載前,需要將把文件前面的模型名稱,才能加載成功

我自己寫的處理代碼如下:

  • #coding=utf-8

  • import os

  • import os.path

  • # 模型存放路徑

  • rootdir = r"H:\code\Model\bert-large-uncased-whole-word-masking-finetuned-squad"# 指明被遍歷的文件夾

  • ?
  • for parent,dirnames,filenames in os.walk(rootdir):#三個參數:分別返回1.父目錄 2.所有文件夾名字(不含路徑) 3.所有文件名字

  • for filename in filenames:#文件名

  • # nameList=filename.split('.')

  • # print(nameList)

  • print(filename)

  • # filenew=nameList[0]+'.jpg'

  • # print(filenew)

  • #模型的名稱

  • newName=filename.replace('bert-large-uncased-whole-word-masking-finetuned-squad-','')

  • os.rename(os.path.join(parent,filename),os.path.join(parent,newName))#重命名

  • 處理完后就可以使用transformers庫進行代碼加載了。


    模型使用

    序列分類(以情感分類為例)

    1.使用管道

  • model_path="H:\\code\\Model\\bert-base-cased-finetuned-mrpc\\"

  • ?
  • from transformers import pipeline

  • #使用當前模型+使用Tensorflow框架,默認應該是使用PYTORCH框架

  • nlp = pipeline("sentiment-analysis",model=model_path, tokenizer=model_path, framework="tf")

  • result = nlp("I hate you")[0]

  • print(f"label: {result['label']}, with score: {round(result['score'], 4)}")

  • result = nlp("I love you")[0]

  • print(f"label: {result['label']}, with score: {round(result['score'], 4)}")

  • 2.直接使用模型

  • model_path="H:\\code\\Model\\bert-base-cased-finetuned-mrpc\\"

  • #pytorch框架

  • ?
  • from transformers import AutoTokenizer, AutoModelForSequenceClassification

  • import torch

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • model = AutoModelForSequenceClassification.from_pretrained(model_path)

  • classes = ["not paraphrase", "is paraphrase"]

  • sequence_0 = "The company HuggingFace is based in New York City"

  • sequence_1 = "Apples are especially bad for your health"

  • sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

  • paraphrase = tokenizer(sequence_0, sequence_2, return_tensors="pt")

  • not_paraphrase = tokenizer(sequence_0, sequence_1, return_tensors="pt")

  • paraphrase_classification_logits = model(**paraphrase).logits

  • not_paraphrase_classification_logits = model(**not_paraphrase).logits

  • paraphrase_results = torch.softmax(paraphrase_classification_logits, dim=1).tolist()[0]

  • not_paraphrase_results = torch.softmax(not_paraphrase_classification_logits, dim=1).tolist()[0]

  • # Should be paraphrase

  • for i in range(len(classes)):

  • print(f"{classes[i]}: {int(round(paraphrase_results[i] * 100))}%")

  • # Should not be paraphrase

  • for i in range(len(classes)):

  • print(f"{classes[i]}: {int(round(not_paraphrase_results[i] * 100))}%")

  • ?
  • #tensorflow框架

  • from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

  • import tensorflow as tf

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • model = TFAutoModelForSequenceClassification.from_pretrained(model_path)

  • classes = ["not paraphrase", "is paraphrase"]

  • sequence_0 = "The company HuggingFace is based in New York City"

  • sequence_1 = "Apples are especially bad for your health"

  • sequence_2 = "HuggingFace's headquarters are situated in Manhattan"

  • paraphrase = tokenizer(sequence_0, sequence_2, return_tensors="tf")

  • not_paraphrase = tokenizer(sequence_0, sequence_1, return_tensors="tf")

  • paraphrase_classification_logits = model(paraphrase)[0]

  • not_paraphrase_classification_logits = model(not_paraphrase)[0]

  • paraphrase_results = tf.nn.softmax(paraphrase_classification_logits, axis=1).numpy()[0]

  • not_paraphrase_results = tf.nn.softmax(not_paraphrase_classification_logits, axis=1).numpy()[0]

  • # Should be paraphrase

  • for i in range(len(classes)):

  • print(f"{classes[i]}: {int(round(paraphrase_results[i] * 100))}%")

  • # Should not be paraphrase

  • for i in range(len(classes)):

  • print(f"{classes[i]}: {int(round(not_paraphrase_results[i] * 100))}%")

  • 提取式問答

    1.使用管道

  • model_path="H:\\code\\Model\\bert-large-uncased-whole-word-masking-finetuned-squad\\"

  • ?
  • from transformers import pipeline

  • nlp = pipeline("question-answering",model=model_path, tokenizer=model_path)

  • context = r"""

  • Extractive Question Answering is the task of extracting an answer from a text given a question. An example of a

  • question answering dataset is the SQuAD dataset, which is entirely based on that task. If you would like to fine-tune

  • a model on a SQuAD task, you may leverage the examples/question-answering/run_squad.py script.

  • """

  • result = nlp(question="What is extractive question answering?", context=context)

  • print(f"Answer: '{result['answer']}', score: {round(result['score'], 4)}, start: {result['start']}, end: {result['end']}")

  • result = nlp(question="What is a good example of a question answering dataset?", context=context)

  • print(f"Answer: '{result['answer']}', score: {round(result['score'], 4)}, start: {result['start']}, end: {result['end']}")

  • 2.直接使用模型

  • model_path="H:\\code\\Model\\bert-large-uncased-whole-word-masking-finetuned-squad\\"

  • #使用pytorch框架

  • from transformers import AutoTokenizer, AutoModelForQuestionAnswering

  • import torch

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • model = AutoModelForQuestionAnswering.from_pretrained(model_path)

  • text = r"""

  • 🤗 Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides general-purpose

  • architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural

  • Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between

  • TensorFlow 2.0 and PyTorch.

  • """

  • questions = [

  • "How many pretrained models are available in 🤗 Transformers?",

  • "What does 🤗 Transformers provide?",

  • "🤗 Transformers provides interoperability between which frameworks?",

  • ]

  • for question in questions:

  • inputs = tokenizer(question, text, add_special_tokens=True, return_tensors="pt")

  • input_ids = inputs["input_ids"].tolist()[0]

  • text_tokens = tokenizer.convert_ids_to_tokens(input_ids)

  • outputs = model(**inputs)

  • answer_start_scores = outputs.start_logits

  • answer_end_scores = outputs.end_logits

  • answer_start = torch.argmax(

  • answer_start_scores

  • ) # Get the most likely beginning of answer with the argmax of the score

  • answer_end = torch.argmax(answer_end_scores) + 1 # Get the most likely end of answer with the argmax of the score

  • answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))

  • print(f"Question: {question}")

  • print(f"Answer: {answer}")

  • ?
  • #使用tensorflow框架

  • from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering

  • import tensorflow as tf

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • model = TFAutoModelForQuestionAnswering.from_pretrained(model_path)

  • text = r"""

  • 🤗 Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides general-purpose

  • architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural

  • Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between

  • TensorFlow 2.0 and PyTorch.

  • """

  • questions = [

  • "How many pretrained models are available in 🤗 Transformers?",

  • "What does 🤗 Transformers provide?",

  • "🤗 Transformers provides interoperability between which frameworks?",

  • ]

  • for question in questions:

  • inputs = tokenizer(question, text, add_special_tokens=True, return_tensors="tf")

  • input_ids = inputs["input_ids"].numpy()[0]

  • text_tokens = tokenizer.convert_ids_to_tokens(input_ids)

  • outputs = model(inputs)

  • answer_start_scores = outputs.start_logits

  • answer_end_scores = outputs.end_logits

  • answer_start = tf.argmax(

  • answer_start_scores, axis=1

  • ).numpy()[0] # Get the most likely beginning of answer with the argmax of the score

  • answer_end = (

  • tf.argmax(answer_end_scores, axis=1) + 1

  • ).numpy()[0] # Get the most likely end of answer with the argmax of the score

  • answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))

  • print(f"Question: {question}")

  • print(f"Answer: {answer}")

  • 語言建模

    1.使用管道

  • model_path="H:\\code\\Model\\distilbert-base-cased\\"

  • from transformers import pipeline

  • nlp = pipeline("fill-mask",model=model_path, tokenizer=model_path, framework="tf")

  • from pprint import pprint

  • pprint(nlp(f"HuggingFace is creating a {nlp.tokenizer.mask_token} that the community uses to solve NLP tasks."))

  • 2.直接使用模型

  • model_path="H:\\code\\Model\\distilbert-base-cased\\"

  • ?
  • ## 使用pytorch實現

  • from transformers import AutoModelWithLMHead, AutoTokenizer

  • import torch

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • model = AutoModelWithLMHead.from_pretrained(model_path)

  • sequence = f"Distilled models are smaller than the models they mimic. Using them instead of the large versions would help {tokenizer.mask_token} our carbon footprint."

  • input = tokenizer.encode(sequence, return_tensors="pt")

  • mask_token_index = torch.where(input == tokenizer.mask_token_id)[1]

  • token_logits = model(input).logits

  • mask_token_logits = token_logits[0, mask_token_index, :]

  • top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()

  • for token in top_5_tokens:

  • print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])))

  • ?
  • ## 使用tensorflow實現

  • from transformers import TFAutoModelWithLMHead, AutoTokenizer

  • import tensorflow as tf

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • model = TFAutoModelWithLMHead.from_pretrained(model_path)

  • sequence = f"Distilled models are smaller than the models they mimic. Using them instead of the large versions would help {tokenizer.mask_token} our carbon footprint."

  • input = tokenizer.encode(sequence, return_tensors="tf")

  • mask_token_index = tf.where(input == tokenizer.mask_token_id)[0, 1]

  • token_logits = model(input)[0]

  • mask_token_logits = token_logits[0, mask_token_index, :]

  • top_5_tokens = tf.math.top_k(mask_token_logits, 5).indices.numpy()

  • for token in top_5_tokens:

  • print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])))

  • 文字生成

    1.使用管道

  • model_path="H:\\code\\Model\\xlnet-base-cased\\"

  • from transformers import pipeline

  • text_generator = pipeline("text-generation",model=model_path, tokenizer=model_path, framework="tf")

  • print(text_generator("As far as I am concerned, I will", max_length=50, do_sample=False))

  • 2.直接使用模型

  • model_path="H:\\code\\Model\\xlnet-base-cased\\"

  • #使用pytorch版本

  • from transformers import AutoModelWithLMHead, AutoTokenizer

  • model = AutoModelWithLMHead.from_pretrained(model_path)

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • # Padding text helps XLNet with short prompts - proposed by Aman Rusia in https://github.com/rusiaaman/XLNet-gen#methodology

  • PADDING_TEXT = """In 1991, the remains of Russian Tsar Nicholas II and his family

  • (except for Alexei and Maria) are discovered.

  • The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the

  • remainder of the story. 1883 Western Siberia,

  • a young Grigori Rasputin is asked by his father and a group of men to perform magic.

  • Rasputin has a vision and denounces one of the men as a horse thief. Although his

  • father initially slaps him for making such an accusation, Rasputin watches as the

  • man is chased outside and beaten. Twenty years later, Rasputin sees a vision of

  • the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,

  • with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""

  • prompt = "Today the weather is really nice and I am planning on "

  • inputs = tokenizer.encode(PADDING_TEXT + prompt, add_special_tokens=False, return_tensors="pt")

  • prompt_length = len(tokenizer.decode(inputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))

  • outputs = model.generate(inputs, max_length=250, do_sample=True, top_p=0.95, top_k=60)

  • generated = prompt + tokenizer.decode(outputs[0])[prompt_length:]

  • print(generated)

  • ?
  • #使用tensorflow版本

  • from transformers import TFAutoModelWithLMHead, AutoTokenizer

  • model = TFAutoModelWithLMHead.from_pretrained(model_path)

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • # Padding text helps XLNet with short prompts - proposed by Aman Rusia in https://github.com/rusiaaman/XLNet-gen#methodology

  • PADDING_TEXT = """In 1991, the remains of Russian Tsar Nicholas II and his family

  • (except for Alexei and Maria) are discovered.

  • The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the

  • remainder of the story. 1883 Western Siberia,

  • a young Grigori Rasputin is asked by his father and a group of men to perform magic.

  • Rasputin has a vision and denounces one of the men as a horse thief. Although his

  • father initially slaps him for making such an accusation, Rasputin watches as the

  • man is chased outside and beaten. Twenty years later, Rasputin sees a vision of

  • the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,

  • with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""

  • prompt = "Today the weather is really nice and I am planning on "

  • inputs = tokenizer.encode(PADDING_TEXT + prompt, add_special_tokens=False, return_tensors="tf")

  • prompt_length = len(tokenizer.decode(inputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))

  • outputs = model.generate(inputs, max_length=250, do_sample=True, top_p=0.95, top_k=60)

  • generated = prompt + tokenizer.decode(outputs[0])[prompt_length:]

  • print(generated)

  • ?
  • 命名實體識別

    1.使用管道

  • model_path="H:\\code\\Model\\dbmdz\\bert-large-cased-finetuned-conll03-english\\"

  • tokenizer="H:\\code\\Model\\bert-base-cased\\"

  • from transformers import pipeline

  • nlp = pipeline("ner",model=model_path, tokenizer=tokenizer_path)

  • sequence = "Hugging Face Inc. is a company based in New York City. Its headquarters are in DUMBO, therefore very"

  • "close to the Manhattan Bridge which is visible from the window."

  • print(nlp(sequence))

  • 2.直接使用模型

  • model_path="H:\\code\\Model\\dbmdz\\bert-large-cased-finetuned-conll03-english\\"

  • tokenizer_path="H:\\code\\Model\\bert-base-cased\\"

  • ?
  • ##使用pytorch格式

  • ?
  • from transformers import AutoModelForTokenClassification, AutoTokenizer

  • import torch

  • model = AutoModelForTokenClassification.from_pretrained(model_path)

  • tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)

  • label_list = [

  • "O", # Outside of a named entity

  • "B-MISC", # Beginning of a miscellaneous entity right after another miscellaneous entity

  • "I-MISC", # Miscellaneous entity

  • "B-PER", # Beginning of a person's name right after another person's name

  • "I-PER", # Person's name

  • "B-ORG", # Beginning of an organisation right after another organisation

  • "I-ORG", # Organisation

  • "B-LOC", # Beginning of a location right after another location

  • "I-LOC" # Location

  • ]

  • sequence = "Hugging Face Inc. is a company based in New York City. Its headquarters are in DUMBO, therefore very" \

  • "close to the Manhattan Bridge."

  • # Bit of a hack to get the tokens with the special tokens

  • tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(sequence)))

  • inputs = tokenizer.encode(sequence, return_tensors="pt")

  • outputs = model(inputs).logits

  • predictions = torch.argmax(outputs, dim=2)

  • print([(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy())])

  • ?
  • ##使用tensorflow格式

  • from transformers import TFAutoModelForTokenClassification, AutoTokenizer

  • import tensorflow as tf

  • model = TFAutoModelForTokenClassification.from_pretrained(model_path)

  • tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)

  • label_list = [

  • "O", # Outside of a named entity

  • "B-MISC", # Beginning of a miscellaneous entity right after another miscellaneous entity

  • "I-MISC", # Miscellaneous entity

  • "B-PER", # Beginning of a person's name right after another person's name

  • "I-PER", # Person's name

  • "B-ORG", # Beginning of an organisation right after another organisation

  • "I-ORG", # Organisation

  • "B-LOC", # Beginning of a location right after another location

  • "I-LOC" # Location

  • ]

  • sequence = "Hugging Face Inc. is a company based in New York City. Its headquarters are in DUMBO, therefore very" \

  • "close to the Manhattan Bridge."

  • # Bit of a hack to get the tokens with the special tokens

  • tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(sequence)))

  • inputs = tokenizer.encode(sequence, return_tensors="tf")

  • outputs = model(inputs)[0]

  • predictions = tf.argmax(outputs, axis=2)

  • print([(token, label_list[prediction]) for token, prediction in zip(tokens, predictions[0].numpy())])

  • 文本摘要

    1.使用管道

  • model_path="H:\\code\\Model\\t5-base\\"

  • ?
  • from transformers import pipeline

  • summarizer = pipeline("summarization",model=model_path, tokenizer=model_path)

  • ARTICLE = """ New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York.

  • A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband.

  • Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared "I do" five more times, sometimes only within two weeks of each other.

  • In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her "first and only" marriage.

  • Barrientos, now 39, is facing two criminal counts of "offering a false instrument for filing in the first degree," referring to her false statements on the

  • 2010 marriage license application, according to court documents.

  • Prosecutors said the marriages were part of an immigration scam.

  • On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to her attorney, Christopher Wright, who declined to comment further.

  • After leaving court, Barrientos was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New York subway through an emergency exit, said Detective

  • Annette Markowski, a police spokeswoman. In total, Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.

  • All occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be married to four men, and at one time, she was married to eight men at once, prosecutors say.

  • Prosecutors said the immigration scam involved some of her husbands, who filed for permanent residence status shortly after the marriages.

  • Any divorces happened only after such filings were approved. It was unclear whether any of the men will be prosecuted.

  • The case was referred to the Bronx District Attorney\'s Office by Immigration and Customs Enforcement and the Department of Homeland Security\'s

  • Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt, Turkey, Georgia, Pakistan and Mali.

  • Her eighth husband, Rashid Rajput, was deported in 2006 to his native Pakistan after an investigation by the Joint Terrorism Task Force.

  • If convicted, Barrientos faces up to four years in prison. Her next court appearance is scheduled for May 18.

  • """

  • print(summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False))

  • 2.直接使用模型

  • model_path="H:\\code\\Model\\t5-base\\"

  • ?
  • #使用pytorch框架

  • from transformers import AutoModelWithLMHead, AutoTokenizer

  • model = AutoModelWithLMHead.from_pretrained(model_path)

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • # T5 uses a max_length of 512 so we cut the article to 512 tokens.

  • inputs = tokenizer.encode("summarize: " + ARTICLE, return_tensors="pt", max_length=512)

  • outputs = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)

  • # print(outputs)

  • print(tokenizer.decode(outputs[0]))

  • ?
  • #使用tensorflow框架

  • from transformers import TFAutoModelWithLMHead, AutoTokenizer

  • model = TFAutoModelWithLMHead.from_pretrained(model_path)

  • tokenizer = AutoTokenizer.from_pretrained(model_path)

  • # T5 uses a max_length of 512 so we cut the article to 512 tokens.

  • inputs = tokenizer.encode("summarize: " + ARTICLE, return_tensors="tf", max_length=512)

  • outputs = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)

  • 翻譯

    1.使用管道

  • model_path="H:\\code\\Model\\t5-base\\"

  • from transformers import pipeline

  • translator = pipeline("translation_en_to_de",model=model_path, tokenizer=model_path)

  • print(translator("Hugging Face is a technology company based in New York and Paris", max_length=40))

  • 2.直接使用模型

    模型定制

    初始化調整

  • model_path="H:\\code\\Model\\distilbert-base-uncased\\"

  • #pytorch方式

  • ?
  • from transformers import DistilBertConfig, DistilBertTokenizer, DistilBertForSequenceClassification

  • config = DistilBertConfig(n_heads=8, dim=512, hidden_dim=4*512)

  • tokenizer = DistilBertTokenizer.from_pretrained(model_path)

  • model = DistilBertForSequenceClassification(config)

  • ?
  • #tensorflow方式

  • ?
  • from transformers import DistilBertConfig, DistilBertTokenizer, TFDistilBertForSequenceClassification

  • config = DistilBertConfig(n_heads=8, dim=512, hidden_dim=4*512)

  • tokenizer = DistilBertTokenizer.from_pretrained(model_path)

  • model = TFDistilBertForSequenceClassification(config)

  • ?
  • 部分調整

  • model_name="H:\\code\\Model\\distilbert-base-uncased\\"

  • ?
  • #pytorch方式

  • ?
  • from transformers import DistilBertConfig, DistilBertTokenizer, DistilBertForSequenceClassification

  • #model_name = "distilbert-base-uncased"

  • model = DistilBertForSequenceClassification.from_pretrained(model_name, num_labels=10)

  • tokenizer = DistilBertTokenizer.from_pretrained(model_name)

  • ?
  • #tensorflow方式

  • from transformers import DistilBertConfig, DistilBertTokenizer, TFDistilBertForSequenceClassification

  • #model_name = "distilbert-base-uncased"

  • model = TFDistilBertForSequenceClassification.from_pretrained(model_name, num_labels=10)

  • tokenizer = DistilBertTokenizer.from_pretrained(model_name)

  • 模型保存與加載

  • #模型保存

  • ##對模型進行微調后,可以通過以下方式將其與標記器一起保存:

  • save_directory="./save/"

  • tokenizer.save_pretrained(save_directory)

  • model.save_pretrained(save_directory)

  • ?
  • #模型加載

  • ##TensorFlow模型中加載已保存的PyTorch模型

  • tokenizer = AutoTokenizer.from_pretrained(save_directory)

  • model = TFAutoModel.from_pretrained(save_directory, from_pt=True)

  • ?
  • ##PyTorch模型中加載已保存的TensorFlow模型

  • tokenizer = AutoTokenizer.from_pretrained(save_directory)

  • model = AutoModel.from_pretrained(save_directory, from_tf=True)

  • ?
  • ?

    總結

    以上是生活随笔為你收集整理的预训练模型transformers综合总结(一)的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    亚洲国产精品无码一区二区三区 | 国产成人综合美国十次 | 日韩视频 中文字幕 视频一区 | 久久国产精品偷任你爽任你 | 久久久www成人免费毛片 | 亚洲精品无码人妻无码 | 人妻人人添人妻人人爱 | 亚洲中文字幕在线观看 | 少妇性l交大片欧洲热妇乱xxx | 5858s亚洲色大成网站www | 亚洲精品久久久久avwww潮水 | 少妇性俱乐部纵欲狂欢电影 | 日韩亚洲欧美中文高清在线 | 欧美成人午夜精品久久久 | 亚洲色欲色欲欲www在线 | 天堂亚洲免费视频 | 国内老熟妇对白xxxxhd | 精品国偷自产在线视频 | 国产手机在线αⅴ片无码观看 | 狂野欧美性猛xxxx乱大交 | 国产熟妇另类久久久久 | 性生交大片免费看l | 欧美成人免费全部网站 | 色综合视频一区二区三区 | 一区二区三区乱码在线 | 欧洲 | 97se亚洲精品一区 | 丰满少妇人妻久久久久久 | 国产无遮挡又黄又爽又色 | 麻豆成人精品国产免费 | 天堂在线观看www | 国产凸凹视频一区二区 | 日本一区二区三区免费播放 | 日本乱偷人妻中文字幕 | 波多野结衣乳巨码无在线观看 | 国产午夜亚洲精品不卡下载 | 国产精品高潮呻吟av久久 | 欧洲精品码一区二区三区免费看 | 久久久久久久人妻无码中文字幕爆 | 亚洲国产欧美日韩精品一区二区三区 | 成熟女人特级毛片www免费 | 国内少妇偷人精品视频 | 亚洲中文字幕无码一久久区 | 日韩无码专区 | 女人和拘做爰正片视频 | 国产9 9在线 | 中文 | 国语精品一区二区三区 | 久久久久久久女国产乱让韩 | 亚洲自偷自拍另类第1页 | 亚洲精品成a人在线观看 | 亚洲区小说区激情区图片区 | 国产97色在线 | 免 | 无遮挡国产高潮视频免费观看 | 骚片av蜜桃精品一区 | 红桃av一区二区三区在线无码av | 精品国产一区二区三区av 性色 | 亚洲精品国产第一综合99久久 | 日韩在线不卡免费视频一区 | 男女下面进入的视频免费午夜 | 99国产精品白浆在线观看免费 | 中文字幕无码av波多野吉衣 | 亚洲精品综合一区二区三区在线 | 成人动漫在线观看 | 成人一区二区免费视频 | 久久久精品456亚洲影院 | 亚洲精品无码人妻无码 | 国产凸凹视频一区二区 | 欧美一区二区三区视频在线观看 | 亚洲成av人片天堂网无码】 | 亚洲精品一区三区三区在线观看 | 色综合久久久无码中文字幕 | 久久久精品国产sm最大网站 | 日本欧美一区二区三区乱码 | 亚洲无人区午夜福利码高清完整版 | 日本一区二区三区免费高清 | 亚洲中文字幕无码中字 | 国产av人人夜夜澡人人爽麻豆 | 久青草影院在线观看国产 | 国产麻豆精品一区二区三区v视界 | 亚洲一区二区三区 | √8天堂资源地址中文在线 | 国色天香社区在线视频 | 欧洲欧美人成视频在线 | 一区二区三区乱码在线 | 欧洲 | 一个人看的视频www在线 | 国产热a欧美热a在线视频 | 欧美三级a做爰在线观看 | 麻豆国产丝袜白领秘书在线观看 | 欧美高清在线精品一区 | 99久久精品无码一区二区毛片 | 中文字幕人妻丝袜二区 | 精品乱子伦一区二区三区 | 成人一在线视频日韩国产 | 性生交大片免费看女人按摩摩 | 国产激情无码一区二区 | 亚洲の无码国产の无码步美 | 男女性色大片免费网站 | 成人无码精品1区2区3区免费看 | 无码人妻av免费一区二区三区 | 人人妻人人澡人人爽欧美精品 | 欧美精品国产综合久久 | 精品厕所偷拍各类美女tp嘘嘘 | 国产超碰人人爽人人做人人添 | 亚洲精品一区二区三区在线观看 | 亚洲熟女一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 欧美老妇交乱视频在线观看 | 岛国片人妻三上悠亚 | 亚洲人成无码网www | 国产亚洲人成a在线v网站 | 国语精品一区二区三区 | 亚洲精品鲁一鲁一区二区三区 | 天天爽夜夜爽夜夜爽 | 欧美丰满老熟妇xxxxx性 | 国产亚洲精品久久久久久久 | 亚洲成色www久久网站 | 国产熟妇高潮叫床视频播放 | 精品厕所偷拍各类美女tp嘘嘘 | 国产乱人伦偷精品视频 | 亚洲国产av精品一区二区蜜芽 | 又紧又大又爽精品一区二区 | 亚洲色欲色欲天天天www | 最近的中文字幕在线看视频 | 无码人妻av免费一区二区三区 | 爽爽影院免费观看 | 丰满护士巨好爽好大乳 | 国产三级精品三级男人的天堂 | 国产精华av午夜在线观看 | 一本加勒比波多野结衣 | 强辱丰满人妻hd中文字幕 | 成 人 网 站国产免费观看 | 秋霞成人午夜鲁丝一区二区三区 | 免费视频欧美无人区码 | 国产亲子乱弄免费视频 | 日本免费一区二区三区最新 | 国产一区二区三区精品视频 | 亚洲色www成人永久网址 | 国内揄拍国内精品人妻 | 国产精品人妻一区二区三区四 | 欧美日韩在线亚洲综合国产人 | 亚洲中文字幕久久无码 | 帮老师解开蕾丝奶罩吸乳网站 | 精品国产aⅴ无码一区二区 | 丰满人妻被黑人猛烈进入 | 超碰97人人射妻 | 久久久久成人精品免费播放动漫 | 精品无码国产一区二区三区av | 男女猛烈xx00免费视频试看 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 精品人妻中文字幕有码在线 | 久久国产36精品色熟妇 | 色妞www精品免费视频 | 亚洲精品一区二区三区在线 | 国产成人综合在线女婷五月99播放 | 亚洲精品一区二区三区婷婷月 | 亚洲成在人网站无码天堂 | 大屁股大乳丰满人妻 | 1000部啪啪未满十八勿入下载 | 亚洲国精产品一二二线 | 六月丁香婷婷色狠狠久久 | 国产午夜手机精彩视频 | 毛片内射-百度 | 国产成人综合美国十次 | 无码精品国产va在线观看dvd | 日本在线高清不卡免费播放 | 亚洲无人区午夜福利码高清完整版 | 久久国内精品自在自线 | 国产综合色产在线精品 | 日本精品高清一区二区 | www国产亚洲精品久久久日本 | 亚洲日韩一区二区 | 天堂а√在线地址中文在线 | 日韩成人一区二区三区在线观看 | 免费人成网站视频在线观看 | 免费国产成人高清在线观看网站 | 亚洲熟妇色xxxxx欧美老妇y | 久久伊人色av天堂九九小黄鸭 | 欧美激情一区二区三区成人 | 亚洲一区二区三区四区 | 国产熟妇高潮叫床视频播放 | 国产超碰人人爽人人做人人添 | 成人无码精品1区2区3区免费看 | 亚洲人成影院在线观看 | 中文字幕+乱码+中文字幕一区 | 欧美日韩视频无码一区二区三 | 牲欲强的熟妇农村老妇女 | 国产97人人超碰caoprom | 牛和人交xxxx欧美 | 97色伦图片97综合影院 | 无码人妻精品一区二区三区不卡 | 亚洲日本一区二区三区在线 | 天堂在线观看www | 中文字幕无码免费久久9一区9 | 成人动漫在线观看 | 国产av一区二区三区最新精品 | 免费观看激色视频网站 | 成人女人看片免费视频放人 | 中文精品无码中文字幕无码专区 | 无码人妻少妇伦在线电影 | 色综合久久中文娱乐网 | 日本精品久久久久中文字幕 | 久久国产自偷自偷免费一区调 | 久久精品国产大片免费观看 | 久久久久久九九精品久 | 丰满妇女强制高潮18xxxx | 97精品国产97久久久久久免费 | 激情国产av做激情国产爱 | 亚洲国产高清在线观看视频 | 国产卡一卡二卡三 | 婷婷色婷婷开心五月四房播播 | 精品无码国产自产拍在线观看蜜 | 国产精品a成v人在线播放 | 十八禁真人啪啪免费网站 | 中文无码伦av中文字幕 | 免费网站看v片在线18禁无码 | 99久久精品国产一区二区蜜芽 | 中文无码精品a∨在线观看不卡 | 2020久久超碰国产精品最新 | 内射爽无广熟女亚洲 | 国产精品久久久久影院嫩草 | 久久久久se色偷偷亚洲精品av | 性做久久久久久久免费看 | 亚洲aⅴ无码成人网站国产app | 亚洲成a人片在线观看无码3d | 国产sm调教视频在线观看 | 老太婆性杂交欧美肥老太 | 激情综合激情五月俺也去 | 性色欲情网站iwww九文堂 | 精品国产精品久久一区免费式 | 亚洲色欲色欲欲www在线 | 亚洲国产精品无码一区二区三区 | 亚洲成av人在线观看网址 | 中文字幕乱码人妻无码久久 | 最近免费中文字幕中文高清百度 | 性色欲网站人妻丰满中文久久不卡 | 亚洲一区二区三区国产精华液 | 久久人妻内射无码一区三区 | 色诱久久久久综合网ywww | 正在播放东北夫妻内射 | 麻豆av传媒蜜桃天美传媒 | 亚洲中文字幕在线无码一区二区 | 国产成人精品久久亚洲高清不卡 | 中文字幕中文有码在线 | 欧美日韩久久久精品a片 | 欧美成人免费全部网站 | 国产av无码专区亚洲a∨毛片 | 超碰97人人做人人爱少妇 | 东京热一精品无码av | 波多野结衣高清一区二区三区 | 色欲综合久久中文字幕网 | 国产精品久久精品三级 | 玩弄少妇高潮ⅹxxxyw | 国内丰满熟女出轨videos | 人人妻人人澡人人爽人人精品浪潮 | 亚洲va欧美va天堂v国产综合 | 久久久精品欧美一区二区免费 | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲中文字幕在线观看 | 国产精品理论片在线观看 | 无码人妻av免费一区二区三区 | 国产精品无码成人午夜电影 | 亚洲一区av无码专区在线观看 | 亚洲爆乳精品无码一区二区三区 | 亚洲阿v天堂在线 | 97久久超碰中文字幕 | 亚洲最大成人网站 | 美女极度色诱视频国产 | 国产精品久久国产精品99 | 一个人看的视频www在线 | 国产精品久久久久9999小说 | 波多野结衣一区二区三区av免费 | 国产精品人人妻人人爽 | 亚洲精品欧美二区三区中文字幕 | 成人精品一区二区三区中文字幕 | 亚洲精品国产精品乱码不卡 | 偷窥日本少妇撒尿chinese | 国产又粗又硬又大爽黄老大爷视 | 无套内谢的新婚少妇国语播放 | 亚洲精品美女久久久久久久 | 无码人妻精品一区二区三区不卡 | 又湿又紧又大又爽a视频国产 | 中国女人内谢69xxxxxa片 | 大地资源中文第3页 | 无码av中文字幕免费放 | 欧美真人作爱免费视频 | 欧美激情综合亚洲一二区 | 无码av免费一区二区三区试看 | 精品国产aⅴ无码一区二区 | 野狼第一精品社区 | 一本久道久久综合婷婷五月 | 国产精品亚洲一区二区三区喷水 | 装睡被陌生人摸出水好爽 | 国产高清av在线播放 | 又粗又大又硬又长又爽 | 久久综合给久久狠狠97色 | 国产一精品一av一免费 | 人妻少妇精品无码专区动漫 | 亚洲精品国产精品乱码不卡 | 狂野欧美性猛xxxx乱大交 | 欧洲欧美人成视频在线 | 无码av最新清无码专区吞精 | 99久久精品国产一区二区蜜芽 | 亚洲 a v无 码免 费 成 人 a v | 亚洲一区二区三区 | 在线观看国产午夜福利片 | 亚洲成av人在线观看网址 | 少女韩国电视剧在线观看完整 | 精品久久久无码中文字幕 | 中文精品无码中文字幕无码专区 | 亚洲精品一区二区三区四区五区 | 久久精品中文闷骚内射 | 沈阳熟女露脸对白视频 | 免费国产成人高清在线观看网站 | 丝袜足控一区二区三区 | 国产乡下妇女做爰 | 亚洲毛片av日韩av无码 | 人人妻人人澡人人爽人人精品浪潮 | 人妻少妇精品无码专区二区 | 欧美日韩色另类综合 | 成人试看120秒体验区 | 天天燥日日燥 | 色欲人妻aaaaaaa无码 | 成人精品视频一区二区 | 人人爽人人澡人人高潮 | 久久人人爽人人爽人人片av高清 | 动漫av一区二区在线观看 | 蜜桃视频插满18在线观看 | 5858s亚洲色大成网站www | 99久久99久久免费精品蜜桃 | 狠狠躁日日躁夜夜躁2020 | 天堂无码人妻精品一区二区三区 | 欧美性猛交内射兽交老熟妇 | 欧美日韩视频无码一区二区三 | 国产亚洲视频中文字幕97精品 | 欧美变态另类xxxx | 国产 精品 自在自线 | 久久久精品456亚洲影院 | 国产精品久久久久久亚洲影视内衣 | 丰满少妇弄高潮了www | 日韩视频 中文字幕 视频一区 | 少妇无码av无码专区在线观看 | 对白脏话肉麻粗话av | 小泽玛莉亚一区二区视频在线 | 中文字幕无码免费久久9一区9 | 国产电影无码午夜在线播放 | 夜夜躁日日躁狠狠久久av | 性欧美牲交在线视频 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 综合激情五月综合激情五月激情1 | 粗大的内捧猛烈进出视频 | 精品熟女少妇av免费观看 | 亚洲经典千人经典日产 | 九月婷婷人人澡人人添人人爽 | 成人无码精品一区二区三区 | 亚洲色在线无码国产精品不卡 | 天堂久久天堂av色综合 | 性生交片免费无码看人 | 日日噜噜噜噜夜夜爽亚洲精品 | 成人无码精品一区二区三区 | 亚洲精品一区二区三区婷婷月 | 日日碰狠狠丁香久燥 | 国产精品99爱免费视频 | 中文无码精品a∨在线观看不卡 | 强奷人妻日本中文字幕 | 欧美阿v高清资源不卡在线播放 | 无码人妻丰满熟妇区毛片18 | 国产人妻精品一区二区三区 | 国产精品久久国产精品99 | 狠狠色色综合网站 | 国产午夜福利100集发布 | 大地资源中文第3页 | 四虎永久在线精品免费网址 | 亚洲色大成网站www | 色情久久久av熟女人妻网站 | 小鲜肉自慰网站xnxx | 人人澡人人妻人人爽人人蜜桃 | 欧美黑人性暴力猛交喷水 | 精品国产一区二区三区四区在线看 | 六月丁香婷婷色狠狠久久 | 亚洲小说图区综合在线 | 国产精品久久久久9999小说 | 亚洲国产综合无码一区 | 久久99精品久久久久久动态图 | 国产乱人伦av在线无码 | 国产真实夫妇视频 | 久久精品丝袜高跟鞋 | 在线成人www免费观看视频 | 国产精品国产三级国产专播 | 成人试看120秒体验区 | 国产精品久久久久久久9999 | 久久精品人人做人人综合试看 | 欧美 丝袜 自拍 制服 另类 | 久久99国产综合精品 | 黄网在线观看免费网站 | 国产情侣作爱视频免费观看 | 亚洲综合色区中文字幕 | 午夜精品久久久久久久 | 成人欧美一区二区三区黑人免费 | 中国女人内谢69xxxxxa片 | 精品aⅴ一区二区三区 | 装睡被陌生人摸出水好爽 | 欧美日本免费一区二区三区 | 成年女人永久免费看片 | 精品水蜜桃久久久久久久 | 色一情一乱一伦一区二区三欧美 | 欧美老人巨大xxxx做受 | 99er热精品视频 | 亚洲综合无码一区二区三区 | 欧美熟妇另类久久久久久多毛 | 国产情侣作爱视频免费观看 | 精品成在人线av无码免费看 | 午夜精品一区二区三区的区别 | 亚洲s色大片在线观看 | 国产真实夫妇视频 | 性啪啪chinese东北女人 | v一区无码内射国产 | 成 人 网 站国产免费观看 | 国内精品九九久久久精品 | 麻豆成人精品国产免费 | 色婷婷综合中文久久一本 | 成人欧美一区二区三区黑人免费 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 熟女体下毛毛黑森林 | 亚洲中文字幕无码中文字在线 | 激情国产av做激情国产爱 | 国产精品美女久久久 | 国产又爽又猛又粗的视频a片 | 色狠狠av一区二区三区 | 亚洲欧美精品伊人久久 | 永久黄网站色视频免费直播 | 人妻少妇精品无码专区动漫 | 特大黑人娇小亚洲女 | 日日夜夜撸啊撸 | 在线а√天堂中文官网 | 鲁鲁鲁爽爽爽在线视频观看 | 日本大香伊一区二区三区 | 成人欧美一区二区三区黑人免费 | 扒开双腿疯狂进出爽爽爽视频 | 中文字幕乱妇无码av在线 | 亚洲中文字幕久久无码 | 欧美日韩人成综合在线播放 | 99久久精品午夜一区二区 | 久久综合九色综合97网 | 少妇高潮一区二区三区99 | 清纯唯美经典一区二区 | 奇米影视7777久久精品人人爽 | 精品国产一区二区三区四区在线看 | 人人爽人人爽人人片av亚洲 | 国产亚洲tv在线观看 | 少妇邻居内射在线 | 国内精品久久久久久中文字幕 | 一本久久a久久精品vr综合 | 色综合久久久无码中文字幕 | 美女扒开屁股让男人桶 | 成人精品一区二区三区中文字幕 | 亚洲精品午夜国产va久久成人 | 久久国产精品_国产精品 | 国产无套粉嫩白浆在线 | 2020最新国产自产精品 | 久久精品国产一区二区三区肥胖 | 久久久久人妻一区精品色欧美 | 欧美午夜特黄aaaaaa片 | 日日摸天天摸爽爽狠狠97 | 欧美乱妇无乱码大黄a片 | 欧美兽交xxxx×视频 | 国产在线aaa片一区二区99 | 男女超爽视频免费播放 | 免费无码av一区二区 | 久热国产vs视频在线观看 | 亚洲国产精华液网站w | 亚洲狠狠婷婷综合久久 | 国产成人无码a区在线观看视频app | 亚欧洲精品在线视频免费观看 | 国产精品久久久久久亚洲毛片 | 青草青草久热国产精品 | 日韩精品无码免费一区二区三区 | 一个人免费观看的www视频 | 成人性做爰aaa片免费看不忠 | 亚洲aⅴ无码成人网站国产app | 无码人妻av免费一区二区三区 | 国产精品久久久久久久9999 | 亚洲成a人片在线观看无码3d | 美女极度色诱视频国产 | 亚洲狠狠婷婷综合久久 | 欧美精品国产综合久久 | 大屁股大乳丰满人妻 | 国产亚洲欧美在线专区 | 蜜桃无码一区二区三区 | 久久午夜无码鲁丝片秋霞 | 国产精品第一区揄拍无码 | 国产精品资源一区二区 | 久久综合香蕉国产蜜臀av | 六十路熟妇乱子伦 | 国产人妻精品午夜福利免费 | 国产成人无码区免费内射一片色欲 | 久久99精品久久久久婷婷 | 免费国产成人高清在线观看网站 | 日韩欧美群交p片內射中文 | 一本久道久久综合婷婷五月 | 国产精品久久久午夜夜伦鲁鲁 | 国产精品亚洲综合色区韩国 | 久久亚洲日韩精品一区二区三区 | 3d动漫精品啪啪一区二区中 | 熟妇人妻激情偷爽文 | 又粗又大又硬毛片免费看 | 亚洲综合无码一区二区三区 | 人人爽人人澡人人人妻 | 日韩无码专区 | 亚洲人亚洲人成电影网站色 | 亚洲熟妇色xxxxx欧美老妇 | 国产成人无码午夜视频在线观看 | 2020久久超碰国产精品最新 | 97色伦图片97综合影院 | 玩弄人妻少妇500系列视频 | 国产精品18久久久久久麻辣 | 激情内射日本一区二区三区 | 四虎国产精品一区二区 | 国产无套内射久久久国产 | 少妇性l交大片欧洲热妇乱xxx | 丝袜 中出 制服 人妻 美腿 | 国产av一区二区三区最新精品 | 久久天天躁狠狠躁夜夜免费观看 | 人妻有码中文字幕在线 | 奇米影视888欧美在线观看 | 国产成人一区二区三区别 | 国产精品久久国产精品99 | 日韩亚洲欧美精品综合 | 麻豆成人精品国产免费 | 久久综合给合久久狠狠狠97色 | 亚洲中文字幕无码一久久区 | 日日摸夜夜摸狠狠摸婷婷 | 国产在线aaa片一区二区99 | www国产精品内射老师 | 麻花豆传媒剧国产免费mv在线 | 狠狠躁日日躁夜夜躁2020 | 精品国产一区二区三区四区在线看 | 国产美女精品一区二区三区 | 无遮无挡爽爽免费视频 | 亚洲国产精华液网站w | 美女毛片一区二区三区四区 | 日日碰狠狠躁久久躁蜜桃 | 欧美xxxx黑人又粗又长 | 国产乱子伦视频在线播放 | 中文字幕+乱码+中文字幕一区 | 国产真实夫妇视频 | 人人妻人人澡人人爽欧美一区 | 成 人 免费观看网站 | 国产精品嫩草久久久久 | 国产一区二区三区影院 | 国产精品欧美成人 | 成人片黄网站色大片免费观看 | 无码福利日韩神码福利片 | 国产精品久久久久久亚洲影视内衣 | 中文字幕日韩精品一区二区三区 | 精品国产一区二区三区四区 | 成人无码视频免费播放 | 久久久久99精品国产片 | 婷婷色婷婷开心五月四房播播 | 亚洲国产综合无码一区 | 久久精品无码一区二区三区 | 亚洲春色在线视频 | 色婷婷久久一区二区三区麻豆 | 久久精品中文字幕一区 | 天干天干啦夜天干天2017 | 精品日本一区二区三区在线观看 | 国产美女精品一区二区三区 | 亚洲区欧美区综合区自拍区 | 亚洲中文字幕无码一久久区 | 国产精品理论片在线观看 | 成在人线av无码免观看麻豆 | 欧美国产亚洲日韩在线二区 | 捆绑白丝粉色jk震动捧喷白浆 | 红桃av一区二区三区在线无码av | 久久综合给合久久狠狠狠97色 | 亚洲熟妇自偷自拍另类 | 久久 国产 尿 小便 嘘嘘 | 秋霞特色aa大片 | 51国偷自产一区二区三区 | 亚洲va中文字幕无码久久不卡 | 国内精品人妻无码久久久影院 | 无码国产乱人伦偷精品视频 | 奇米影视7777久久精品 | 三级4级全黄60分钟 | 国产精品久久久一区二区三区 | 亚洲国产精品美女久久久久 | 亚洲高清偷拍一区二区三区 | 国产黑色丝袜在线播放 | 精品国产乱码久久久久乱码 | 蜜臀av在线播放 久久综合激激的五月天 | 国产色视频一区二区三区 | 成人无码影片精品久久久 | 亚洲中文字幕乱码av波多ji | 狠狠噜狠狠狠狠丁香五月 | 永久免费观看美女裸体的网站 | av小次郎收藏 | 熟女少妇人妻中文字幕 | 国产在线精品一区二区三区直播 | 国内少妇偷人精品视频 | 内射爽无广熟女亚洲 | 成熟女人特级毛片www免费 | 久久久久亚洲精品中文字幕 | 亚洲综合无码一区二区三区 | 日本丰满护士爆乳xxxx | 99视频精品全部免费免费观看 | 国产av无码专区亚洲a∨毛片 | 亚洲成a人片在线观看无码 | 无码av岛国片在线播放 | 午夜无码区在线观看 | 国产xxx69麻豆国语对白 | 亚洲男女内射在线播放 | 成人一在线视频日韩国产 | 欧美激情一区二区三区成人 | 少妇无码av无码专区在线观看 | 国产真人无遮挡作爱免费视频 | 人人妻人人澡人人爽欧美一区九九 | 丰满人妻精品国产99aⅴ | аⅴ资源天堂资源库在线 | 亚洲欧美中文字幕5发布 | 自拍偷自拍亚洲精品10p | 少妇性l交大片欧洲热妇乱xxx | 国产内射爽爽大片视频社区在线 | 国产人妖乱国产精品人妖 | 日韩亚洲欧美中文高清在线 | 亚洲s色大片在线观看 | 精品国精品国产自在久国产87 | av人摸人人人澡人人超碰下载 | 国产女主播喷水视频在线观看 | 成人精品视频一区二区三区尤物 | 老熟女乱子伦 | 全黄性性激高免费视频 | 亚洲中文字幕成人无码 | 国产精品怡红院永久免费 | 性欧美熟妇videofreesex | 帮老师解开蕾丝奶罩吸乳网站 | 久久99国产综合精品 | 日本免费一区二区三区最新 | 亚洲aⅴ无码成人网站国产app | 国产精品18久久久久久麻辣 | 人妻夜夜爽天天爽三区 | 天堂一区人妻无码 | 久久久久久久久蜜桃 | 日本高清一区免费中文视频 | 国产成人精品一区二区在线小狼 | 日本精品少妇一区二区三区 | 国产午夜亚洲精品不卡下载 | 少妇被黑人到高潮喷出白浆 | 国产亚洲视频中文字幕97精品 | 国产精品二区一区二区aⅴ污介绍 | 亚洲日本va中文字幕 | 熟妇女人妻丰满少妇中文字幕 | 国产av一区二区三区最新精品 | 亚洲热妇无码av在线播放 | 欧美一区二区三区 | 欧美精品国产综合久久 | а天堂中文在线官网 | 九九久久精品国产免费看小说 | 欧美成人家庭影院 | 精品久久综合1区2区3区激情 | 国产片av国语在线观看 | 日日摸夜夜摸狠狠摸婷婷 | 久久精品国产一区二区三区肥胖 | 国产激情无码一区二区 | 中文字幕乱码人妻无码久久 | 久久成人a毛片免费观看网站 | 亚洲中文字幕av在天堂 | 男女猛烈xx00免费视频试看 | 荫蒂被男人添的好舒服爽免费视频 | 欧美xxxxx精品 | 自拍偷自拍亚洲精品10p | 激情内射日本一区二区三区 | 狠狠亚洲超碰狼人久久 | 捆绑白丝粉色jk震动捧喷白浆 | 日韩av无码一区二区三区不卡 | 国产情侣作爱视频免费观看 | 中文字幕乱码中文乱码51精品 | 又大又硬又黄的免费视频 | 国产卡一卡二卡三 | 欧美日韩综合一区二区三区 | 粉嫩少妇内射浓精videos | 人妻少妇被猛烈进入中文字幕 | 国产精品成人av在线观看 | 亚洲a无码综合a国产av中文 | 国产内射老熟女aaaa | 少妇无码一区二区二三区 | 日韩成人一区二区三区在线观看 | 亚洲精品成人福利网站 | 国产精品久久久久影院嫩草 | 欧美丰满熟妇xxxx | 亚洲精品国产精品乱码视色 | 亚洲色www成人永久网址 | 1000部啪啪未满十八勿入下载 | 中文字幕乱码人妻二区三区 | 国产av人人夜夜澡人人爽麻豆 | 久久久久成人精品免费播放动漫 | 国产suv精品一区二区五 | 国产欧美熟妇另类久久久 | 动漫av网站免费观看 | 亚洲精品国产精品乱码不卡 | 成人无码精品1区2区3区免费看 | 成人aaa片一区国产精品 | 高潮喷水的毛片 | 久久精品国产亚洲精品 | 欧美 日韩 人妻 高清 中文 | 给我免费的视频在线观看 | 国语自产偷拍精品视频偷 | 中文字幕日韩精品一区二区三区 | 76少妇精品导航 | 中文字幕无码人妻少妇免费 | 日韩 欧美 动漫 国产 制服 | 高中生自慰www网站 | 男女爱爱好爽视频免费看 | 伊人色综合久久天天小片 | 日韩人妻无码一区二区三区久久99 | 国产乱人伦av在线无码 | 狂野欧美激情性xxxx | 老头边吃奶边弄进去呻吟 | 日产精品99久久久久久 | 欧美人与物videos另类 | 真人与拘做受免费视频 | 人妻少妇精品无码专区动漫 | 久久久国产精品无码免费专区 | 亚洲精品无码人妻无码 | 人人爽人人爽人人片av亚洲 | 乌克兰少妇性做爰 | 国产精品久久久久影院嫩草 | 内射后入在线观看一区 | 在线播放无码字幕亚洲 | 中文字幕无码视频专区 | 日本精品人妻无码免费大全 | 久9re热视频这里只有精品 | 精品国偷自产在线 | 中文无码成人免费视频在线观看 | 精品国产成人一区二区三区 | 人妻中文无码久热丝袜 | 色情久久久av熟女人妻网站 | 精品午夜福利在线观看 | 欧美老熟妇乱xxxxx | 亚洲精品久久久久久久久久久 | 在教室伦流澡到高潮hnp视频 | 国产黑色丝袜在线播放 | 国产精品亚洲综合色区韩国 | 国产偷国产偷精品高清尤物 | 久久精品中文字幕一区 | 久久精品人妻少妇一区二区三区 | 成 人 网 站国产免费观看 | 伊人久久大香线焦av综合影院 | 久久亚洲精品成人无码 | 精品人妻人人做人人爽 | 丰满妇女强制高潮18xxxx | 丝袜 中出 制服 人妻 美腿 | 国产香蕉尹人视频在线 | 亚洲一区二区三区偷拍女厕 | 欧美日韩综合一区二区三区 | 精品国产一区av天美传媒 | 久久精品国产一区二区三区 | 亚洲成a人片在线观看日本 | 久久精品女人的天堂av | 亚洲欧美综合区丁香五月小说 | 欧美zoozzooz性欧美 | 日欧一片内射va在线影院 | 人人爽人人爽人人片av亚洲 | 国产成人精品一区二区在线小狼 | 性色欲网站人妻丰满中文久久不卡 | 亚洲国产欧美国产综合一区 | 国产特级毛片aaaaaa高潮流水 | 欧美人与禽猛交狂配 | 国产av一区二区精品久久凹凸 | 蜜桃无码一区二区三区 | 精品久久久久久亚洲精品 | 老司机亚洲精品影院 | 最新国产乱人伦偷精品免费网站 | 国产精品自产拍在线观看 | 波多野结衣aⅴ在线 | 国产精品亚洲专区无码不卡 | 狠狠色噜噜狠狠狠7777奇米 | 欧美丰满少妇xxxx性 | 欧美黑人乱大交 | 国产成人精品一区二区在线小狼 | 宝宝好涨水快流出来免费视频 | 亚洲精品国产精品乱码视色 | 无遮挡啪啪摇乳动态图 | 国产福利视频一区二区 | 香蕉久久久久久av成人 | 综合激情五月综合激情五月激情1 | 无套内射视频囯产 | 中文字幕人成乱码熟女app | 18黄暴禁片在线观看 | 西西人体www44rt大胆高清 | 亚洲狠狠婷婷综合久久 | 国产精品久久久午夜夜伦鲁鲁 | 亚洲国产av精品一区二区蜜芽 | 久久综合狠狠综合久久综合88 | 国产九九九九九九九a片 | 久久精品丝袜高跟鞋 | 在线 国产 欧美 亚洲 天堂 | 国产亚洲精品久久久久久 | 任你躁国产自任一区二区三区 | 啦啦啦www在线观看免费视频 | 亚洲午夜福利在线观看 | 国语自产偷拍精品视频偷 | 少妇人妻大乳在线视频 | 狠狠综合久久久久综合网 | 性生交大片免费看l | 欧美性生交xxxxx久久久 | 亚洲区小说区激情区图片区 | 丰满人妻翻云覆雨呻吟视频 | 亚洲精品久久久久avwww潮水 | 日本熟妇乱子伦xxxx | 丰满少妇弄高潮了www | 亚洲经典千人经典日产 | 国产精品无码久久av | ass日本丰满熟妇pics | 欧美精品国产综合久久 | 台湾无码一区二区 | 亚洲精品一区二区三区在线 | 国产亚洲精品久久久久久久 | 亚洲成a人片在线观看日本 | 波多野结衣乳巨码无在线观看 | 久久久久成人片免费观看蜜芽 | 国产精品亚洲五月天高清 | 亚洲熟妇色xxxxx欧美老妇 | 国内精品人妻无码久久久影院蜜桃 | 少女韩国电视剧在线观看完整 | 国产麻豆精品精东影业av网站 | 特黄特色大片免费播放器图片 | 在线视频网站www色 | 丰满肥臀大屁股熟妇激情视频 | 国产精品亚洲а∨无码播放麻豆 | 国产精品亚洲lv粉色 | 国产两女互慰高潮视频在线观看 | 中文字幕无码免费久久99 | 国产无套粉嫩白浆在线 | 久久www免费人成人片 | 久久久久久九九精品久 | 亚洲国产精品久久久天堂 | 国内老熟妇对白xxxxhd | 亚洲小说图区综合在线 | 国产午夜手机精彩视频 | 国产乱人偷精品人妻a片 | 精品国产精品久久一区免费式 | 亚洲高清偷拍一区二区三区 | 欧美精品国产综合久久 | 天堂а√在线地址中文在线 | 成人精品视频一区二区 | 天堂在线观看www | 亚洲国产精品一区二区第一页 | 欧美性生交xxxxx久久久 | 99精品久久毛片a片 | 亚洲精品成人av在线 | 亚洲热妇无码av在线播放 | 99久久人妻精品免费一区 | 国产两女互慰高潮视频在线观看 | 性色欲情网站iwww九文堂 | 国产办公室秘书无码精品99 | 一二三四在线观看免费视频 | 少妇邻居内射在线 | av无码久久久久不卡免费网站 | 久久综合香蕉国产蜜臀av | 国产又粗又硬又大爽黄老大爷视 | 精品国偷自产在线 | 国产内射爽爽大片视频社区在线 | 免费视频欧美无人区码 | 欧美大屁股xxxxhd黑色 | 久久综合九色综合97网 | 国产精品多人p群无码 | 国产精品亚洲综合色区韩国 | 日本护士毛茸茸高潮 | 在线天堂新版最新版在线8 | 久9re热视频这里只有精品 | 麻豆国产人妻欲求不满谁演的 | 水蜜桃亚洲一二三四在线 | 欧美人与牲动交xxxx | 亚洲日韩av片在线观看 | 精品日本一区二区三区在线观看 | 西西人体www44rt大胆高清 | 国产sm调教视频在线观看 | 亚洲理论电影在线观看 | 美女毛片一区二区三区四区 | 一本加勒比波多野结衣 | 国产黑色丝袜在线播放 | 波多野结衣av一区二区全免费观看 | 强伦人妻一区二区三区视频18 | 成人无码视频在线观看网站 | 熟女少妇人妻中文字幕 | 精品久久久久久人妻无码中文字幕 | 少妇性俱乐部纵欲狂欢电影 | 天天av天天av天天透 | 国产精品亚洲一区二区三区喷水 | 2020最新国产自产精品 | 欧美黑人性暴力猛交喷水 | 熟女俱乐部五十路六十路av | 一本大道久久东京热无码av | 在线观看国产一区二区三区 | 又粗又大又硬毛片免费看 | 强开小婷嫩苞又嫩又紧视频 | 国产热a欧美热a在线视频 | 在线a亚洲视频播放在线观看 | 少妇人妻偷人精品无码视频 | 欧美老人巨大xxxx做受 | 成人欧美一区二区三区 | 欧美第一黄网免费网站 | 久久人人爽人人爽人人片av高清 | 精品国产青草久久久久福利 | 中文精品无码中文字幕无码专区 | √8天堂资源地址中文在线 | 樱花草在线播放免费中文 | 久久精品国产一区二区三区肥胖 | 亚洲精品国产a久久久久久 | 成人aaa片一区国产精品 | 成人免费视频一区二区 | 图片区 小说区 区 亚洲五月 | 亚洲精品一区二区三区四区五区 | 亚洲s色大片在线观看 | 欧美性猛交xxxx富婆 | 思思久久99热只有频精品66 | 婷婷色婷婷开心五月四房播播 | 中文字幕人成乱码熟女app | 欧美激情综合亚洲一二区 | 亚洲国产精品成人久久蜜臀 | 国产激情无码一区二区app | 88国产精品欧美一区二区三区 | 性欧美牲交在线视频 | 免费人成网站视频在线观看 | 中文字幕乱码亚洲无线三区 | 天天躁日日躁狠狠躁免费麻豆 | 欧美国产日韩亚洲中文 | v一区无码内射国产 | 香蕉久久久久久av成人 | 国产精品无码一区二区三区不卡 | 国产精品久免费的黄网站 | 无码午夜成人1000部免费视频 | 久久精品人人做人人综合 | 亚洲日本在线电影 | 国产麻豆精品一区二区三区v视界 | 九九热爱视频精品 | 亚洲一区av无码专区在线观看 | 亚洲国产av精品一区二区蜜芽 | 黑人大群体交免费视频 | 亚洲一区二区观看播放 | 日日碰狠狠躁久久躁蜜桃 | 全球成人中文在线 | 性做久久久久久久久 | 国产极品视觉盛宴 | 国产国语老龄妇女a片 | 日本饥渴人妻欲求不满 | 精品久久久中文字幕人妻 | 国产成人一区二区三区在线观看 | 亚洲日韩av一区二区三区四区 | 日韩精品无码一本二本三本色 | 青青草原综合久久大伊人精品 | 性史性农村dvd毛片 | 青青青手机频在线观看 | 亚洲中文字幕在线观看 | 精品无码一区二区三区爱欲 | 成人动漫在线观看 | 亚洲成色在线综合网站 | 亚洲色在线无码国产精品不卡 | 亚洲成在人网站无码天堂 | 国产人妻精品一区二区三区不卡 | 国产激情无码一区二区 | 大屁股大乳丰满人妻 | 国产精品99爱免费视频 | 欧美亚洲国产一区二区三区 | 欧美 日韩 人妻 高清 中文 | 亚洲精品欧美二区三区中文字幕 | 亚洲国产成人a精品不卡在线 | 国产精品丝袜黑色高跟鞋 | 日日躁夜夜躁狠狠躁 | 国产精品久久久av久久久 | 丰满人妻精品国产99aⅴ | 久久综合激激的五月天 | 国产av无码专区亚洲awww | 亚洲国产高清在线观看视频 | 国产无套内射久久久国产 | 中文字幕 亚洲精品 第1页 | 日韩少妇白浆无码系列 | 人人妻人人澡人人爽精品欧美 | 亚洲一区二区三区香蕉 | 亚洲日韩中文字幕在线播放 | 十八禁视频网站在线观看 | 丰满人妻一区二区三区免费视频 | 妺妺窝人体色www在线小说 | 中国女人内谢69xxxxxa片 | 在线 国产 欧美 亚洲 天堂 | 人人妻人人澡人人爽人人精品 | 午夜嘿嘿嘿影院 | 欧美激情一区二区三区成人 | 欧美35页视频在线观看 | 无码帝国www无码专区色综合 | 国产香蕉97碰碰久久人人 | 午夜熟女插插xx免费视频 | 狂野欧美性猛xxxx乱大交 | 日日夜夜撸啊撸 | 少妇激情av一区二区 | 樱花草在线社区www | 又紧又大又爽精品一区二区 | 人妻体内射精一区二区三四 | 一本精品99久久精品77 | 欧美乱妇无乱码大黄a片 | 久久久久久久久蜜桃 | 一区二区三区乱码在线 | 欧洲 | 亚洲精品www久久久 | 国内精品一区二区三区不卡 | 暴力强奷在线播放无码 | 久久99精品久久久久久 | 亚洲aⅴ无码成人网站国产app | 午夜免费福利小电影 | 天堂一区人妻无码 | 天海翼激烈高潮到腰振不止 | 亚洲 高清 成人 动漫 | 少妇无套内谢久久久久 | 女人和拘做爰正片视频 | 日本熟妇乱子伦xxxx | 岛国片人妻三上悠亚 | 97精品人妻一区二区三区香蕉 | 国产特级毛片aaaaaa高潮流水 | 久久久久久a亚洲欧洲av冫 | 国产九九九九九九九a片 | 国产真实夫妇视频 | 欧美猛少妇色xxxxx | 免费人成网站视频在线观看 | 男女作爱免费网站 | 日韩视频 中文字幕 视频一区 | 色婷婷综合激情综在线播放 | 精品亚洲韩国一区二区三区 | 亚洲精品一区二区三区大桥未久 | 久久亚洲精品成人无码 | 鲁鲁鲁爽爽爽在线视频观看 | 国产精品人人妻人人爽 | 欧美 日韩 亚洲 在线 | 精品无人国产偷自产在线 | 在线观看国产午夜福利片 | 久久久中文字幕日本无吗 | 久久综合给合久久狠狠狠97色 | 国产成人无码一二三区视频 | 国产精品办公室沙发 | 国产成人无码a区在线观看视频app | 久久久无码中文字幕久... | 熟妇女人妻丰满少妇中文字幕 | 未满小14洗澡无码视频网站 | 亚洲成av人在线观看网址 | 国产香蕉97碰碰久久人人 | 丰满少妇女裸体bbw | 亚洲 激情 小说 另类 欧美 | 国产激情精品一区二区三区 | 亚洲精品一区二区三区大桥未久 | 3d动漫精品啪啪一区二区中 | 丰满妇女强制高潮18xxxx | 久热国产vs视频在线观看 | 国产精品久免费的黄网站 | 一本大道久久东京热无码av | 国产高清av在线播放 | 无码国模国产在线观看 | 无码国模国产在线观看 | 午夜精品一区二区三区的区别 | 精品国产一区二区三区四区在线看 | 我要看www免费看插插视频 | 久久精品视频在线看15 | 无码av免费一区二区三区试看 | 久久综合久久自在自线精品自 | 久久精品女人的天堂av | 亚洲国产欧美日韩精品一区二区三区 | 国产成人无码一二三区视频 | 成人三级无码视频在线观看 | aⅴ在线视频男人的天堂 | 日本www一道久久久免费榴莲 | 激情五月综合色婷婷一区二区 | 国产明星裸体无码xxxx视频 | 国产婷婷色一区二区三区在线 | 欧美精品在线观看 | 久久国产精品_国产精品 | 狠狠综合久久久久综合网 | 精品国产乱码久久久久乱码 | 国产人成高清在线视频99最全资源 | 国产真实乱对白精彩久久 | 国产成人综合美国十次 | 精品无码av一区二区三区 | 一本久道久久综合狠狠爱 | 亚洲中文字幕久久无码 | 天堂无码人妻精品一区二区三区 | 亚洲精品久久久久avwww潮水 | 成人一区二区免费视频 | 永久免费精品精品永久-夜色 | 亚洲综合色区中文字幕 | 午夜肉伦伦影院 | 免费人成在线视频无码 | 日日夜夜撸啊撸 | 免费观看的无遮挡av | 国产日产欧产精品精品app | 5858s亚洲色大成网站www | 中文字幕无码乱人伦 | 粉嫩少妇内射浓精videos | 成人无码视频免费播放 | 亚洲区欧美区综合区自拍区 | 东京热一精品无码av | 中文精品久久久久人妻不卡 | 人妻天天爽夜夜爽一区二区 | 牲欲强的熟妇农村老妇女视频 | 精品国产一区二区三区四区在线看 | 熟妇激情内射com | 久久人人爽人人爽人人片av高清 | 久久人人爽人人爽人人片av高清 | 黄网在线观看免费网站 | 午夜福利一区二区三区在线观看 | 男人的天堂av网站 | ass日本丰满熟妇pics | 欧美猛少妇色xxxxx | 精品久久久中文字幕人妻 | 人人妻人人澡人人爽人人精品浪潮 | 中文字幕日韩精品一区二区三区 | 亚洲色无码一区二区三区 | 熟女少妇人妻中文字幕 | 日本一卡二卡不卡视频查询 | 国产美女极度色诱视频www | 久久精品一区二区三区四区 | 亚洲欧美日韩综合久久久 | 色窝窝无码一区二区三区色欲 | 在线精品国产一区二区三区 | 窝窝午夜理论片影院 | 久久午夜无码鲁丝片午夜精品 | 国产成人无码午夜视频在线观看 | 日产精品99久久久久久 | 日韩少妇白浆无码系列 | 国产激情精品一区二区三区 | 久久久久久久久蜜桃 | 久久精品中文闷骚内射 | 久激情内射婷内射蜜桃人妖 | 国产av无码专区亚洲a∨毛片 | 欧美精品一区二区精品久久 | 99久久久国产精品无码免费 | 男女超爽视频免费播放 | 男人扒开女人内裤强吻桶进去 | 亲嘴扒胸摸屁股激烈网站 | 久久久婷婷五月亚洲97号色 | 国产人妻精品一区二区三区不卡 | 国内精品人妻无码久久久影院 | 九九久久精品国产免费看小说 | 久久精品99久久香蕉国产色戒 | 伊人久久婷婷五月综合97色 | 色偷偷人人澡人人爽人人模 | 久久久久se色偷偷亚洲精品av | 丰满少妇高潮惨叫视频 | 日产国产精品亚洲系列 | 亚洲中文字幕乱码av波多ji | 国产成人无码一二三区视频 | 爆乳一区二区三区无码 | 色一情一乱一伦一视频免费看 | 人人澡人人透人人爽 | 久久亚洲a片com人成 | 丰满少妇人妻久久久久久 | 久久午夜无码鲁丝片 | 最新国产乱人伦偷精品免费网站 | 久久久久久九九精品久 | 欧美freesex黑人又粗又大 | 亚洲精品成人av在线 | 麻豆人妻少妇精品无码专区 | 天堂一区人妻无码 | 特黄特色大片免费播放器图片 | 国产成人精品视频ⅴa片软件竹菊 | 国内精品久久久久久中文字幕 | 中文字幕无线码 | 999久久久国产精品消防器材 | 六十路熟妇乱子伦 | 国产午夜无码视频在线观看 | 国产偷自视频区视频 | 男人扒开女人内裤强吻桶进去 | 国产人妻精品一区二区三区 | 亚洲国产精品久久久久久 | 激情内射日本一区二区三区 | 无码av免费一区二区三区试看 | 亚洲日本在线电影 | 国产精品久久久久无码av色戒 | 久热国产vs视频在线观看 | 夜夜高潮次次欢爽av女 | 97夜夜澡人人爽人人喊中国片 | 少妇性俱乐部纵欲狂欢电影 | 欧洲极品少妇 | 亚洲理论电影在线观看 | 亚洲欧美国产精品专区久久 | 中文字幕无码日韩专区 | 久久精品国产一区二区三区 | 久久伊人色av天堂九九小黄鸭 | 国产亲子乱弄免费视频 | 欧美一区二区三区视频在线观看 | 中文精品久久久久人妻不卡 | 国产超级va在线观看视频 | 久久久久免费精品国产 | 久久精品国产一区二区三区肥胖 | 老子影院午夜精品无码 | 国产精品毛多多水多 | 国产精品资源一区二区 | 欧美黑人巨大xxxxx | 久久亚洲中文字幕无码 | 无码福利日韩神码福利片 | 精品国产乱码久久久久乱码 | 国产suv精品一区二区五 | 亚洲中文字幕在线观看 | 丰满少妇人妻久久久久久 | 99久久人妻精品免费二区 | 国产精品va在线观看无码 | 欧美性猛交内射兽交老熟妇 | 给我免费的视频在线观看 | 午夜嘿嘿嘿影院 | 亚洲va欧美va天堂v国产综合 | 毛片内射-百度 | 国产熟妇另类久久久久 | 男人扒开女人内裤强吻桶进去 | 在线观看国产一区二区三区 | 国精产品一区二区三区 | 正在播放老肥熟妇露脸 | 成人无码视频在线观看网站 | 亚洲中文字幕无码中字 | 亚洲人亚洲人成电影网站色 | 女人被男人爽到呻吟的视频 | 亚洲精品国产a久久久久久 | 乱码av麻豆丝袜熟女系列 | 精品夜夜澡人妻无码av蜜桃 | 国产又粗又硬又大爽黄老大爷视 | 欧美三级不卡在线观看 | 精品国产国产综合精品 | 中文字幕无线码 | 成熟妇人a片免费看网站 | 亚洲の无码国产の无码影院 | 欧美日韩视频无码一区二区三 | 中文字幕精品av一区二区五区 | 日韩欧美中文字幕公布 | 色综合久久网 | 中文字幕乱码人妻二区三区 | 色婷婷综合中文久久一本 | 国产性生大片免费观看性 | 综合网日日天干夜夜久久 | 亚洲乱码国产乱码精品精 | 中文字幕av无码一区二区三区电影 | 久久精品国产精品国产精品污 | 国产乱人伦av在线无码 | 国产精品人人爽人人做我的可爱 | 日本丰满护士爆乳xxxx | 无码福利日韩神码福利片 | 久久午夜无码鲁丝片秋霞 | 国产日产欧产精品精品app | 99精品国产综合久久久久五月天 | 美女毛片一区二区三区四区 | aⅴ亚洲 日韩 色 图网站 播放 | 亚洲熟女一区二区三区 | 无码精品人妻一区二区三区av | 少妇厨房愉情理9仑片视频 | 狠狠噜狠狠狠狠丁香五月 | 国产精品美女久久久 | a片免费视频在线观看 | 人妻体内射精一区二区三四 | 水蜜桃av无码 | 久久午夜无码鲁丝片 | 久青草影院在线观看国产 | 日欧一片内射va在线影院 | 成人精品视频一区二区 | 亚洲中文无码av永久不收费 | 成年美女黄网站色大免费视频 | 男女爱爱好爽视频免费看 | 女人被爽到呻吟gif动态图视看 | 国产精品久久久久影院嫩草 | 黑人巨大精品欧美黑寡妇 | 中文字幕色婷婷在线视频 | 亚洲熟熟妇xxxx | 丰满人妻翻云覆雨呻吟视频 | 久久99精品国产.久久久久 | 18精品久久久无码午夜福利 | 男人扒开女人内裤强吻桶进去 | 亚洲欧美国产精品久久 | 国产亲子乱弄免费视频 | 国产人妻精品一区二区三区 | 中文字幕av伊人av无码av | 日本www一道久久久免费榴莲 | 人妻少妇被猛烈进入中文字幕 | 国产精品高潮呻吟av久久 | 正在播放东北夫妻内射 | 久久久婷婷五月亚洲97号色 | 欧美日韩一区二区综合 | 国产亚洲tv在线观看 | 久精品国产欧美亚洲色aⅴ大片 | 国产69精品久久久久app下载 | 人人爽人人澡人人高潮 | 亚洲一区二区三区国产精华液 | 日本乱偷人妻中文字幕 | 成年美女黄网站色大免费视频 | 精品无码av一区二区三区 | 久久久久成人片免费观看蜜芽 | 妺妺窝人体色www在线小说 | 国产黑色丝袜在线播放 | 夜夜高潮次次欢爽av女 | 99精品视频在线观看免费 | 国内综合精品午夜久久资源 | 国产在线一区二区三区四区五区 | 鲁一鲁av2019在线 | 国产乱人伦偷精品视频 | 国产成人无码午夜视频在线观看 | 欧美日韩一区二区综合 | 粗大的内捧猛烈进出视频 | 草草网站影院白丝内射 | 久久久久久九九精品久 | 欧美乱妇无乱码大黄a片 | av无码不卡在线观看免费 | 亚洲一区二区三区 | 在线看片无码永久免费视频 | 亚洲精品午夜国产va久久成人 | 中文字幕无码免费久久99 | 中文字幕无线码免费人妻 | 亚洲人成网站免费播放 | 亚洲熟妇色xxxxx欧美老妇 | 欧美老妇与禽交 | 无码国产色欲xxxxx视频 | 成人亚洲精品久久久久软件 | 国产精品高潮呻吟av久久 | 亚洲成av人片天堂网无码】 | 国产香蕉97碰碰久久人人 | 露脸叫床粗话东北少妇 | 国产精品无码永久免费888 | 人妻天天爽夜夜爽一区二区 | 人人妻人人澡人人爽欧美精品 | 欧美肥老太牲交大战 | 少妇人妻大乳在线视频 | 少妇被黑人到高潮喷出白浆 | 亚洲人成人无码网www国产 | 国产一区二区三区精品视频 | 日韩精品无码一区二区中文字幕 | 人妻无码久久精品人妻 | 欧美性生交活xxxxxdddd | 无码人妻av免费一区二区三区 | 思思久久99热只有频精品66 | 国产精品视频免费播放 | 国产熟妇高潮叫床视频播放 | 国内精品一区二区三区不卡 | 久久久久久国产精品无码下载 | 国产精品自产拍在线观看 | 3d动漫精品啪啪一区二区中 | 人妻熟女一区 | 国产精品久久久久久亚洲毛片 | 国产亚洲精品久久久久久大师 | 成人综合网亚洲伊人 | 国产亚洲视频中文字幕97精品 | 宝宝好涨水快流出来免费视频 | www成人国产高清内射 | 国产亚洲日韩欧美另类第八页 | 狠狠噜狠狠狠狠丁香五月 | 亚洲人亚洲人成电影网站色 | 国产福利视频一区二区 | 18无码粉嫩小泬无套在线观看 | 纯爱无遮挡h肉动漫在线播放 | 日日碰狠狠丁香久燥 | 免费乱码人妻系列无码专区 | 国内少妇偷人精品视频免费 | 国产特级毛片aaaaaaa高清 | 天堂一区人妻无码 | 男人扒开女人内裤强吻桶进去 | 亚洲综合在线一区二区三区 | 国产精品二区一区二区aⅴ污介绍 | 精品国偷自产在线 | 国产午夜福利100集发布 | 色五月丁香五月综合五月 | 人妻体内射精一区二区三四 | 巨爆乳无码视频在线观看 | 国产色在线 | 国产 | 人人妻人人澡人人爽欧美精品 | 性做久久久久久久久 | 亚洲国产欧美国产综合一区 | 好男人社区资源 | 国产口爆吞精在线视频 | 麻豆国产人妻欲求不满 | 美女极度色诱视频国产 | 免费播放一区二区三区 | 一本加勒比波多野结衣 | 性色欲网站人妻丰满中文久久不卡 | 亚洲欧洲中文日韩av乱码 | 波多野结衣乳巨码无在线观看 | 丰满护士巨好爽好大乳 | 国产农村妇女高潮大叫 | 免费无码的av片在线观看 | 亚洲成色www久久网站 | 一本久久a久久精品vr综合 | 三级4级全黄60分钟 | 兔费看少妇性l交大片免费 | 天堂亚洲免费视频 | 国产亚洲日韩欧美另类第八页 | 日韩人妻无码中文字幕视频 | 国产精品va在线播放 | 亚洲狠狠色丁香婷婷综合 | 国产乱子伦视频在线播放 | 久精品国产欧美亚洲色aⅴ大片 | 亚洲国产成人a精品不卡在线 | 亚洲中文字幕在线无码一区二区 | 国产成人人人97超碰超爽8 | 天堂а√在线中文在线 | 国产午夜视频在线观看 | 日本成熟视频免费视频 | 精品无码成人片一区二区98 | 久久久久成人片免费观看蜜芽 | 国产精品视频免费播放 | www成人国产高清内射 | 精品国产一区二区三区av 性色 | 精品国产精品久久一区免费式 | 无码午夜成人1000部免费视频 | 一个人免费观看的www视频 | 无码人妻出轨黑人中文字幕 | 国产热a欧美热a在线视频 | 日本爽爽爽爽爽爽在线观看免 | 亚洲 另类 在线 欧美 制服 | a片在线免费观看 | 纯爱无遮挡h肉动漫在线播放 | 成人无码视频免费播放 | 国产人成高清在线视频99最全资源 | 国产精品美女久久久网av | 国产成人无码区免费内射一片色欲 | 国产精品-区区久久久狼 | 红桃av一区二区三区在线无码av | 日本精品高清一区二区 | 鲁大师影院在线观看 | 亚洲理论电影在线观看 | 国产农村乱对白刺激视频 | 午夜福利电影 | 人人妻人人澡人人爽人人精品 | 日韩亚洲欧美中文高清在线 | 婷婷丁香五月天综合东京热 | 亚洲国产综合无码一区 | 男女超爽视频免费播放 | 精品久久久久久人妻无码中文字幕 | 国产亚洲精品精品国产亚洲综合 | 5858s亚洲色大成网站www | 国产午夜视频在线观看 | 亚洲精品一区二区三区大桥未久 | 日韩精品无码一本二本三本色 | 老熟女重囗味hdxx69 | 色狠狠av一区二区三区 | 大地资源中文第3页 | 国精品人妻无码一区二区三区蜜柚 | 国产精品沙发午睡系列 | 人妻少妇被猛烈进入中文字幕 | 亚洲 高清 成人 动漫 | 天下第一社区视频www日本 | 国产精品亚洲专区无码不卡 | 老司机亚洲精品影院无码 | 久久人人爽人人爽人人片ⅴ | 人人超人人超碰超国产 | 国产成人综合在线女婷五月99播放 | 亚洲成熟女人毛毛耸耸多 | 日本丰满熟妇videos | 色一情一乱一伦一区二区三欧美 | 国产熟女一区二区三区四区五区 | 麻豆精产国品 | 国产精品丝袜黑色高跟鞋 | 风流少妇按摩来高潮 | 国产无遮挡又黄又爽又色 | 少妇被黑人到高潮喷出白浆 | 99精品久久毛片a片 | 亚洲一区二区三区无码久久 | 一区二区三区乱码在线 | 欧洲 | 久久国语露脸国产精品电影 | 日本欧美一区二区三区乱码 | 日本免费一区二区三区最新 | 免费中文字幕日韩欧美 | 少妇高潮喷潮久久久影院 | 久久人人97超碰a片精品 | 国产精品久久久久久久9999 | 强奷人妻日本中文字幕 | 日日麻批免费40分钟无码 | 国产又粗又硬又大爽黄老大爷视 | 成熟妇人a片免费看网站 | 国产精品第一区揄拍无码 | 两性色午夜免费视频 | 亚洲国产日韩a在线播放 | 日本www一道久久久免费榴莲 | 亚洲七七久久桃花影院 | 日韩亚洲欧美精品综合 | 少女韩国电视剧在线观看完整 | 久久亚洲日韩精品一区二区三区 | 国产精品久久久久久久影院 | 免费国产黄网站在线观看 | 亚洲乱码日产精品bd | 中文字幕无码人妻少妇免费 | √天堂中文官网8在线 | 一本无码人妻在中文字幕免费 | 久久www免费人成人片 | 小泽玛莉亚一区二区视频在线 | 人人妻人人澡人人爽人人精品 | 99久久精品国产一区二区蜜芽 | 国产成人人人97超碰超爽8 | 久久综合九色综合97网 | 日本精品人妻无码77777 天堂一区人妻无码 | 97精品人妻一区二区三区香蕉 | 欧美成人午夜精品久久久 | 国产精品自产拍在线观看 | 四虎国产精品一区二区 | 国内少妇偷人精品视频 | 国产莉萝无码av在线播放 | 少妇性俱乐部纵欲狂欢电影 | 国产美女精品一区二区三区 | 久久综合网欧美色妞网 | 熟妇人妻中文av无码 | 在线亚洲高清揄拍自拍一品区 | 永久免费观看美女裸体的网站 | 国产特级毛片aaaaaa高潮流水 | 亚洲精品国偷拍自产在线观看蜜桃 | 曰本女人与公拘交酡免费视频 | 夜先锋av资源网站 | 亚洲码国产精品高潮在线 | 天天av天天av天天透 | 精品国精品国产自在久国产87 | 在线精品国产一区二区三区 | 无码人妻出轨黑人中文字幕 | 偷窥日本少妇撒尿chinese | 高潮毛片无遮挡高清免费 | 爽爽影院免费观看 | 国产成人亚洲综合无码 | 老熟妇乱子伦牲交视频 | 精品熟女少妇av免费观看 | 天堂а√在线地址中文在线 | 国产一精品一av一免费 | 亚洲中文字幕乱码av波多ji | 狠狠亚洲超碰狼人久久 | 色偷偷人人澡人人爽人人模 | 国产一区二区不卡老阿姨 | 特级做a爰片毛片免费69 | 亚洲人成网站在线播放942 | 日本熟妇大屁股人妻 | a在线观看免费网站大全 | 国产美女精品一区二区三区 | 成人综合网亚洲伊人 | 成人精品一区二区三区中文字幕 | 久久久无码中文字幕久... | 国产精品高潮呻吟av久久 | 牲交欧美兽交欧美 | 国内老熟妇对白xxxxhd | 久久国产精品精品国产色婷婷 | 久久亚洲精品中文字幕无男同 | 任你躁国产自任一区二区三区 | 国产成人无码av在线影院 | 午夜精品一区二区三区在线观看 | 久久精品国产精品国产精品污 | 亚洲精品国产第一综合99久久 | 国产综合色产在线精品 | 丰满妇女强制高潮18xxxx | 中文字幕人妻无码一夲道 | 97久久精品无码一区二区 | 国产精品久久久久久久9999 | 国产性生交xxxxx无码 | 日韩少妇内射免费播放 | 无码人妻少妇伦在线电影 | 中文字幕无码av波多野吉衣 | 久久99精品国产麻豆 | 东京一本一道一二三区 | 粗大的内捧猛烈进出视频 | 麻豆蜜桃av蜜臀av色欲av | 亚洲国产高清在线观看视频 | 亚洲自偷精品视频自拍 | 福利一区二区三区视频在线观看 | 成人性做爰aaa片免费看不忠 | 76少妇精品导航 | 国产成人无码一二三区视频 | a片免费视频在线观看 | 精品久久久无码中文字幕 | 国产精品欧美成人 | 精品一二三区久久aaa片 | 51国偷自产一区二区三区 | 成人试看120秒体验区 | 国产成人无码专区 | 精品久久久无码中文字幕 | 日本在线高清不卡免费播放 | 极品嫩模高潮叫床 | 精品熟女少妇av免费观看 | 免费无码一区二区三区蜜桃大 | 88国产精品欧美一区二区三区 | 男女猛烈xx00免费视频试看 | 99精品视频在线观看免费 | 国产高清不卡无码视频 | 欧美性猛交xxxx富婆 | 色欲久久久天天天综合网精品 | 午夜精品一区二区三区在线观看 | 丝袜人妻一区二区三区 | 欧美国产日产一区二区 | 国产免费久久精品国产传媒 | а√天堂www在线天堂小说 | 99久久人妻精品免费一区 | 精品久久久久久人妻无码中文字幕 | 成人欧美一区二区三区 | 欧美日韩久久久精品a片 | 激情内射亚州一区二区三区爱妻 | 扒开双腿吃奶呻吟做受视频 | 国色天香社区在线视频 | 荡女精品导航 | 国产内射老熟女aaaa | 国产人妖乱国产精品人妖 | 中文字幕无码av激情不卡 | 国内揄拍国内精品少妇国语 | 中文字幕无码人妻少妇免费 | 永久黄网站色视频免费直播 | 无码人妻精品一区二区三区不卡 | 激情内射亚州一区二区三区爱妻 | 亚洲日韩av一区二区三区中文 | 国产农村妇女高潮大叫 | 亚洲大尺度无码无码专区 | 中文字幕 人妻熟女 | 亚洲gv猛男gv无码男同 | 国产成人精品久久亚洲高清不卡 | 综合网日日天干夜夜久久 | 亚洲精品久久久久avwww潮水 | 国产极品美女高潮无套在线观看 | 国产一区二区不卡老阿姨 | a国产一区二区免费入口 | 亚洲精品一区国产 | 日韩无套无码精品 | 欧美日本精品一区二区三区 | 亚洲精品国产第一综合99久久 | 成在人线av无码免观看麻豆 | 内射白嫩少妇超碰 | 亚洲人成影院在线无码按摩店 | 亚洲精品中文字幕久久久久 | 国产免费无码一区二区视频 | 亚洲国产欧美国产综合一区 | 又紧又大又爽精品一区二区 | 无码精品国产va在线观看dvd | 亚洲区欧美区综合区自拍区 | 人妻无码αv中文字幕久久琪琪布 | 亚洲成a人片在线观看日本 | 天天躁日日躁狠狠躁免费麻豆 | 久久亚洲国产成人精品性色 | 亲嘴扒胸摸屁股激烈网站 | 久久zyz资源站无码中文动漫 | 亚洲第一网站男人都懂 | 久久久久国色av免费观看性色 | 亚洲自偷自拍另类第1页 | 天堂无码人妻精品一区二区三区 | 国产又爽又猛又粗的视频a片 | 精品成人av一区二区三区 | 亚洲欧美日韩成人高清在线一区 | 国产人妻久久精品二区三区老狼 | 欧美大屁股xxxxhd黑色 | 亚洲一区二区观看播放 | 日韩av无码一区二区三区 | 综合激情五月综合激情五月激情1 | 99久久无码一区人妻 | 婷婷五月综合激情中文字幕 | 4hu四虎永久在线观看 | 久久国产劲爆∧v内射 | 久久无码专区国产精品s | 国产乱人伦偷精品视频 | 欧美三级不卡在线观看 | 欧美午夜特黄aaaaaa片 | 理论片87福利理论电影 | 成人亚洲精品久久久久软件 | 欧美怡红院免费全部视频 | 玩弄中年熟妇正在播放 | 精品熟女少妇av免费观看 | 久久综合给久久狠狠97色 | 水蜜桃亚洲一二三四在线 | 国产精品对白交换视频 | 无套内射视频囯产 | 色欲人妻aaaaaaa无码 | 国产激情无码一区二区app | 国产亲子乱弄免费视频 | 老熟女重囗味hdxx69 | 一本色道婷婷久久欧美 | 97久久国产亚洲精品超碰热 | 大地资源网第二页免费观看 | 全球成人中文在线 | 丁香花在线影院观看在线播放 | 亚洲一区二区三区四区 | 77777熟女视频在线观看 а天堂中文在线官网 | 中文字幕乱码中文乱码51精品 | 免费无码午夜福利片69 | 无码福利日韩神码福利片 | 亚洲国产欧美日韩精品一区二区三区 | 高清不卡一区二区三区 | 欧美丰满少妇xxxx性 | 国产午夜视频在线观看 | 久久这里只有精品视频9 | 日本一卡二卡不卡视频查询 | 中文亚洲成a人片在线观看 | 国产情侣作爱视频免费观看 | 在线a亚洲视频播放在线观看 |