TensorFlow 莫烦 手写识别 cross_entry (五)
生活随笔
收集整理的這篇文章主要介紹了
TensorFlow 莫烦 手写识别 cross_entry (五)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 20 15:40:48 2017
同濟大學 土木大樓B406
@author: Administrator
"""from __future__ import print_function import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', one_hot=True)def add_layer(inputs,in_size,out_size,activation_function=None):Weights = tf.Variable(tf.random_normal([in_size,out_size]))biases = tf.Variable(tf.zeros([1,out_size])+0.1)Wx_plus_b = tf.matmul(inputs,Weights)+biasesif activation_function is None:outputs=Wx_plus_belse:outputs=activation_function(Wx_plus_b)return outputsdef compute_accuracy(v_xs,v_ys):y_pre=sess.run(prediction,feed_dict={xs:v_xs})correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})return resultxs=tf.placeholder(tf.float32,[None,784])ys=tf.placeholder(tf.float32,[None,10])prediction=add_layer(xs,784,10,activation_function=tf.nn.softmax)cross_entropy=tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))train_step=tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)sess=tf.Session()sess.run(tf.initialize_all_variables())for i in range(1000):batch_xs,batch_ys=mnist.train.next_batch(100)sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})if i%50==0:print(compute_accuracy(mnist.test.images,mnist.test.labels))
總結
以上是生活随笔為你收集整理的TensorFlow 莫烦 手写识别 cross_entry (五)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: TensorFlow 最小二乘法拟合
- 下一篇: CNN卷积神经网络的相关文章