git鏈接
參考鏈接
訓練模型
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 16 22:26:43 2019@author: lg
"""#coding=utf-8
# 載入MINIST數據需要的庫
from tensorflow.examples.tutorials.mnist import input_data
# 保存模型需要的庫
from tensorflow.python.framework.graph_util import convert_variables_to_constants
from tensorflow.python.framework import graph_util
# 導入其他庫
import tensorflow as tf
import cv2
import numpy as np
#獲取MINIST數據
mnist = input_data.read_data_sets(".",one_hot = True)
# 創建會話
sess = tf.InteractiveSession()#占位符
x = tf.placeholder("float", shape=[None, 784], name="Mul")
y_ = tf.placeholder("float",shape=[None, 10], name="y_")
#變量
W = tf.Variable(tf.zeros([784,10]),name='x')
b = tf.Variable(tf.zeros([10]),'y_')#權重
def weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)
#偏差
def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)
#卷積
def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
#最大池化
def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
#相關變量的創建
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
#激活函數
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder("float",name='rob')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)#用于訓練用的softmax函數
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2,name='res')
#用于訓練作完后,作測試用的softmax函數
y_conv2=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2,name="final_result")#交叉熵的計算,返回包含了損失值的Tensor。cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
#優化器,負責最小化交叉熵
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
#計算準確率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#初始化所以變量
sess.run(tf.global_variables_initializer())# 保存輸入輸出,可以為之后用
tf.add_to_collection('res', y_conv)
tf.add_to_collection('output', y_conv2)
tf.add_to_collection('x', x)#訓練開始
for i in range(1000):batch = mnist.train.next_batch(50)if i%100 == 0:train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})print ("step %d, training accuracy %g"%(i, train_accuracy))
#run()可以看做輸入相關值給到函數中的占位符,然后計算的出結果,這里將batch[0],給xbatch[1]給y_train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})#將當前圖設置為默認圖
graph_def = tf.get_default_graph().as_graph_def()
#將上面的變量轉化成常量,保存模型為pb模型時需要,注意這里的final_result和前面的y_con2是同名,只有這樣才會保存它,否則會報錯,
# 如果需要保存其他tensor只需要讓tensor的名字和這里保持一直即可
output_graph_def = tf.graph_util.convert_variables_to_constants(sess, graph_def, ['final_result'])
#保存前面訓練后的模型為pb文件
with tf.gfile.GFile("grf.pb", 'wb') as f: f.write(output_graph_def.SerializeToString())#用saver 保存模型
saver = tf.train.Saver()
saver.save(sess, "model_data/model") ##導入圖片,同時灰度化
#im = cv2.imread('pic/e2.jpg',cv2.IMREAD_GRAYSCALE)
##反轉圖像,因為e2.jpg為白底黑字
#im =reversePic(im)
#cv2.namedWindow("camera", cv2.WINDOW_NORMAL);
#cv2.imshow('camera',im)
#cv2.waitKey(0)
#
##調整大小
#im = cv2.resize(im,(28,28),interpolation=cv2.INTER_CUBIC)
#x_img = np.reshape(im , [-1 , 784])
#
#
##輸出圖像矩陣
## print x_img
#
##用上面導入的圖片對模型進行測試
#output = sess.run(y_conv2 , feed_dict={x:x_img })
## print 'the y_con : ', '\n',output
#print ('the predict is : ', np.argmax(output) )
#print ("test accracy %g"%accuracy.eval(feed_dict={
# x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
加載模型第一種
# -*- coding:utf-8 -*-
import cv2
import tensorflow as tf
import numpy as np
from sys import path
#用于將自定義輸入圖片反轉
def reversePic(src):# 圖像反轉 for i in range(src.shape[0]):for j in range(src.shape[1]):src[i,j] = 255 - src[i,j]return src def main(): sess = tf.InteractiveSession()
#模型恢復saver=tf.train.import_meta_graph('model_data/model.meta')saver.restore(sess, 'model_data/model')graph = tf.get_default_graph()# 獲取輸入tensor,,獲取輸出tensorinput_x = sess.graph.get_tensor_by_name("Mul:0")y_conv2 = sess.graph.get_tensor_by_name("final_result:0")# 也可以上面注釋,通過下面獲取輸出輸入tensor,# y_conv2 = tf.get_collection('output')[0]# # x= tf.get_collection('x')[0]# input_x = graph.get_operation_by_name('Mul').outputs[0]# keep_prob = graph.get_operation_by_name('rob').outputs[0]path1="pic/e2.jpg" im = cv2.imread(path1,cv2.IMREAD_GRAYSCALE)#反轉圖像,因為e2.jpg為白底黑字 im =reversePic(im)
# cv2.namedWindow("camera", cv2.WINDOW_NORMAL);
# cv2.imshow('camera',im)
# cv2.waitKey(0) # im=cv2.threshold(im, , 255, cv2.THRESH_BINARY_INV)[1];im = cv2.resize(im,(28,28),interpolation=cv2.INTER_CUBIC) # im=cv2.threshold(im,200,255,cv2.THRESH_TRUNC)[1]# im=cv2.threshold(im,60,255,cv2.THRESH_TOZERO)[1]#數據從0~255轉為-0.5~0.5 # img_gray = (im - (255 / 2.0)) / 255 x_img = np.reshape(im , [-1 , 784]) output = sess.run(y_conv2 , feed_dict={input_x:x_img}) print ('the predict is %d' % (np.argmax(output)) )#關閉會話 sess.close() if __name__ == '__main__': main()
加載模型第二種
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 17 11:15:53 2019@author: lg
"""#coding=utf-8
from __future__ import absolute_import, unicode_literals
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.framework.graph_util import convert_variables_to_constants
from tensorflow.python.framework import graph_util
import cv2
import numpy as np
mnist = input_data.read_data_sets(".",one_hot = True)
import tensorflow as tf#用于將自定義輸入圖片反轉
def reversePic(src):# 圖像反轉 for i in range(src.shape[0]):for j in range(src.shape[1]):src[i,j] = 255 - src[i,j]return src with tf.Session() as persisted_sess:print("load graph")with tf.gfile.FastGFile("grf.pb",'rb') as f:graph_def = tf.GraphDef()graph_def.ParseFromString(f.read())persisted_sess.graph.as_default()tf.import_graph_def(graph_def, name='')# print("map variables")with tf.Session() as sess:# tf.initialize_all_variables().run()input_x = sess.graph.get_tensor_by_name("Mul:0")y_conv_2 = sess.graph.get_tensor_by_name("final_result:0")path="pic/e2.jpg" im = cv2.imread(path,cv2.IMREAD_GRAYSCALE) #反轉圖像,因為e2.jpg為白底黑字 im =reversePic(im)
# cv2.namedWindow("camera", cv2.WINDOW_NORMAL);
# cv2.imshow('camera',im)
# cv2.waitKey(0) # im=cv2.threshold(im, , 255, cv2.THRESH_BINARY_INV)[1];im = cv2.resize(im,(28,28),interpolation=cv2.INTER_CUBIC) # im =reversePic(im)# im=cv2.threshold(im,200,255,cv2.THRESH_TRUNC)[1]# im=cv2.threshold(im,60,255,cv2.THRESH_TOZERO)[1]# img_gray = (im - (255 / 2.0)) / 255 x_img = np.reshape(im , [-1 , 784]) output = sess.run(y_conv_2 , feed_dict={input_x:x_img}) print ('the predict is %d' % (np.argmax(output)) )#關閉會話 sess.close()
總結
以上是生活随笔為你收集整理的tensorflow加载模型的全部內容,希望文章能夠幫你解決所遇到的問題。
如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。