CodeChefSeries Sum (伯努利数+生成函数+FFT)
題面
傳送門
給定\(a_1,..,a_n\),定義\(f(x,k)=\sum_{i=1}^n(x+a_i)^k,g(t,k)=\sum_{x=0}^tf(x,k)\),給定\(T,K\),請你對\(\forall i\in[0,K]\),求出\(g(T,i)\),對\(10^9+7\)取模
前置芝士
伯努利數(shù)
什么?你不會伯努利數(shù)?那你先去看看這篇文章
\(MTT\)
什么?看到這模數(shù)你說你不會\(MTT\)?出門左轉(zhuǎn)洛谷模板區(qū)啥都有
題解
cjj拿著這題來問咱,咱發(fā)現(xiàn)自己跟個白癡一樣啥也不會……
好毒瘤啊……雖然過了樣例之后就\(1A\)了比較爽……但這還是多項(xiàng)式啊……
首先,對\(f(x,k)\),有
\[ \begin{aligned} f(x,k) &=\sum_{i=1}^n(x+a_i)^k\\ &=\sum_{i=1}^n\sum_{j=0}^k{k\choose j}x^j{a_i}^{k-j}\\ &=\sum_{j=0}^k{k\choose j}x^j\sum_{i=1}^n{a_i}^{k-j}\\ \end{aligned} \]
然后對\(g(t,k)\),有
\[ g(t,k)=\sum_{x=0}^t\sum_{j=0}^k{k\choose j}x^j\sum_{i=1}^n{a_i}^{k-j} \]
寫成卷積形式
\[ {g(t,k)\over k!}=\sum_{j=0}^k{\sum_{x=0}^tx^j\over j!}{\sum_{i=1}^n{a_i}^{k-j}\over (k-j)!} \]
我們需要求出\(G(x)\)的第\(k\)項(xiàng)的系數(shù)乘上\(k!\)就是題目中所說的\(g(T,k)\)的答案
所以我們現(xiàn)在需要快速求出后面兩個多項(xiàng)式的系數(shù)
左邊
令左邊的多項(xiàng)式為\(F(x)\),這是一個關(guān)于自然數(shù)冪和的東西,那么就得上伯努利數(shù)了
不過注意正常的伯努利數(shù)求自然數(shù)冪和是\(\sum_{i=0}^{n-1}i^k\)而這里是\(\sum_{i=0}^{n}i^k\),不要忘了加上\(n^k\)
然后接下來就是推倒的時間
\[ \begin{aligned} \left[x^k\right]F &=\sum_{i=0}^ti^k\\ &=t^k+{1\over k+1}\sum_{i=0}^k{k+1\choose i}B_it^{k+1-i}\\ &=t^k+k!\sum_{i=0}^k{B_i\over i!}{t^{k+1-i}\over (k+1-i)!} \end{aligned} \]
已經(jīng)可以寫成卷積的形式了,卷積出來的柿子的第\(k+1\)項(xiàng)乘上\(k!\)加上\(t^k\)就是\([x^k]F\)了
不過注意卷積的柿子中并沒有\({B_{k+1}\over {(k+1)!}}\times {t^0\over 0!}\)這一項(xiàng),所以要把\({t^0\over 0!}\)設(shè)為\(0\)才行
順便注意\([x^0]F\)應(yīng)該是\(t+1\)
右邊
令第二個多項(xiàng)式為\(A(z)\),有
\[ \begin{aligned} A(x)=\sum_{i=0}^\infty x^i{\sum_{k=1}^n{a_k}^i\over i!} \end{aligned} \]
然后繼續(xù)推倒
\[ \begin{aligned} A(x) &=\sum_{i=0}^\infty x^i\sum_{j=1}^n{a_j}^i\\ &=\sum_{j=1}^n\sum_{i=0}^\infty {a_j}^ix^i\\ &=\sum_{i=1}^n{1\over 1-a_ix}\\ &=\sum_{i=1}^n {a_i}^0+{a_i}^1x^1+{a_i}^2x^2+... \end{aligned} \]
所以……這玩意兒該咋算啊……
我們設(shè)
\[ \begin{aligned} G(x) &=\sum_{i=1}^n{-a_i\over 1-a_ix}\\ &=\sum_{i=1}^n-{a_i}^1-{a_i}^2x-{a_i}^3x^2-...\\ \end{aligned} \]
那么就有\(A(x)=-xG(x)+n\)
然而我還是不會算\(G\)啊……
那就繼續(xù)推倒
\[ \begin{aligned} G(x) &=\sum_{i=1}^n{-a_i\over 1-a_ix}\\ &=\sum_{i=1}^n\ln'\left(1-a_ix\right)\\ &=\ln'\left(\prod_{i=1}^n (1-a_ix)\right) \end{aligned} \]
分治\(NTT\)就行啦
然后沒有然后了
記得思路清晰一點(diǎn)
//minamoto #include<bits/stdc++.h> #define R register #define ll long long #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i) #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v) using namespace std; char buf[1<<21],*p1=buf,*p2=buf; inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;} int read(){R int res,f=1;R char ch;while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');return res*f; } ll readll(){R ll res,f=1;R char ch;while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');return res*f; } char sr[1<<21],z[20];int C=-1,Z=0; inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;} void print(R int x){if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;while(z[++Z]=x%10+48,x/=10);while(sr[++C]=z[Z],--Z);sr[++C]=' '; } const int N=(1<<18)+5,P=1e9+7;const double Pi=acos(-1.0); inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;} inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;} inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;} int ksm(R int x,R int y){R int res=1;for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);return res; } struct cp{double x,y;cp(R double xx=0,R double yy=0){x=xx,y=yy;}inline cp operator +(const cp &b)const{return cp(x+b.x,y+b.y);}inline cp operator -(const cp &b)const{return cp(x-b.x,y-b.y);}inline cp operator *(const cp &b)const{return cp(x*b.x-y*b.y,x*b.y+y*b.x);} }rt[2][N<<1]; int r[21][N],inv[N],fac[N],ifac[N],B[N],A[N],d,lim; inline void init(R int len){lim=1,d=0;while(lim<len)lim<<=1,++d;} void FFT(cp *A,int ty){fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);cp t;for(R int mid=1;mid<lim;mid<<=1)for(R int j=0;j<lim;j+=(mid<<1)) fp(k,0,mid-1)A[j+k+mid]=A[j+k]-(t=A[j+k+mid]*rt[ty][mid+k]),A[j+k]=A[j+k]+t;if(!ty){double k=1.0/lim;fp(i,0,lim-1)A[i].x*=k;} } void MTT(int *a,int *b,int len,int *c){init(len<<1);static cp A[N],B[N],C[N],D[N],F[N],G[N],H[N];fp(i,0,len-1){A[i].x=a[i]>>15,B[i].x=a[i]&32767,C[i].x=b[i]>>15,D[i].x=b[i]&32767,A[i].y=B[i].y=C[i].y=D[i].y=0;}fp(i,len,lim-1)A[i]=B[i]=C[i]=D[i]=0;FFT(A,1),FFT(B,1),FFT(C,1),FFT(D,1);fp(i,0,lim-1)F[i]=A[i]*C[i],G[i]=A[i]*D[i]+B[i]*C[i],H[i]=B[i]*D[i];FFT(F,0),FFT(G,0),FFT(H,0);fp(i,0,lim-1)c[i]=(((ll)(F[i].x+0.5)%P<<30)+((ll)(G[i].x+0.5)<<15)+((ll)(H[i].x+0.5)))%P; } void Inv(int *a,int *b,int len){if(len==1)return b[0]=ksm(a[0],P-2),void();Inv(a,b,len>>1);static int c[N],d[N];MTT(a,b,len,c),MTT(b,c,len,d);fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),d[i]); } void Ln(int *a,int *b,int len){static int A[N],B[N];fp(i,1,len-1)A[i-1]=mul(a[i],i);A[len-1]=0;Inv(a,B,len),MTT(A,B,len,A);fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0; } void Pre(){fp(d,1,18)fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));inv[0]=fac[0]=ifac[0]=inv[1]=fac[1]=ifac[1]=1;fp(i,2,262144){fac[i]=mul(fac[i-1],i),inv[i]=mul(P-P/i,inv[P%i]),ifac[i]=mul(ifac[i-1],inv[i]);}for(R int i=1;i<=262144;i<<=1)fp(k,0,i-1)rt[1][i+k]=cp(cos(Pi*k/i),sin(Pi*k/i)),rt[0][i+k]=cp(cos(Pi*k/i),-sin(Pi*k/i));fp(i,0,65535)A[i]=ifac[i+1];Inv(A,B,1<<16);fp(i,0,65535)B[i]=mul(B[i],fac[i]); } int D[21][N],a[N]; void solve(int d,int l,int r){if(l==r)return D[d][0]=1,D[d][1]=P-a[l],void();int mid=(l+r)>>1;solve(d,l,mid),solve(d+1,mid+1,r);init(max(mid-l+1,r-mid)+1);int len=lim;fp(i,mid-l+2,len-1)D[d][i]=0;fp(i,r-mid+1,len-1)D[d+1][i]=0;MTT(D[d],D[d+1],len,D[d]);fp(i,r-l+2,(len<<1)-1)D[d][i]=0; } void calc(int *a,int *b,int n,int t){static int A[N],B[N];solve(1,1,n);init(t+1);int len=lim;fp(i,0,n)A[i]=D[1][i];fp(i,n+1,len-1)A[i]=0;Ln(A,B,len);fp(i,1,len-1)B[i-1]=mul(B[i],i);B[len-1]=0;b[0]=n;fp(i,1,t)b[i]=mul(P-B[i-1],ifac[i]); } int ak[N],bk[N],bin[N],F[N],G[N],n,k,t; void MAIN(){bin[0]=1;fp(i,1,k+k)bin[i]=mul(bin[i-1],t);int len=1;while(len<k+2)len<<=1;fp(i,0,len-1)F[i]=mul(B[i],ifac[i]),G[i]=mul(bin[i],ifac[i]);G[0]=0;MTT(F,G,len,F);ak[0]=t+1;fp(i,1,k)ak[i]=add(bin[i],mul(fac[i],F[i+1])),ak[i]=mul(ak[i],ifac[i]);calc(a,bk,n,k);len=1;while(len<k)len<<=1;fp(i,k+1,len-1)ak[i]=bk[i]=0;MTT(ak,bk,len,ak);fp(i,0,k)print(mul(ak[i],fac[i])); } int main(){ // freopen("testdata.in","r",stdin);Pre();n=read(),k=read(),t=readll()%P;fp(i,1,n)a[i]=read();MAIN();return Ot(),0; }轉(zhuǎn)載于:https://www.cnblogs.com/bztMinamoto/p/10539897.html
總結(jié)
以上是生活随笔為你收集整理的CodeChefSeries Sum (伯努利数+生成函数+FFT)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 驰骋工作流程底层的API开发接口-重要的
- 下一篇: [2019.1.14]BZOJ2005