用固定收敛标准网络的迭代次数比较两张图片的相似度
生活随笔
收集整理的這篇文章主要介紹了
用固定收敛标准网络的迭代次数比较两张图片的相似度
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
在上一次實驗中已經由數據證實了可以用特征迭代次數去區分minst數據集中的0和1時有可能的,因為50張0和50張1的分類正確率可以打到99%。
本文將迭代次數按大小排列,比較了圖片和迭代次數的關系
| ? | ? | a | b | 迭代次數 | 時間ms | 時間min |
| 0*34 | 0.504092 | 0.496892 | 31808.4 | 76592 | 1.276533 | |
| 0*26 | 0.504145 | 0.496745 | 34094.86 | 83691 | 1.39485 | |
| 0*41 | 0.504069 | 0.496969 | 34775.88 | 84630 | 1.4105 | |
| 0*36 | 0.50385 | 0.49755 | 41926.72 | 99082 | 1.651367 | |
| 0*27 | 0.503765 | 0.498165 | 47928.64 | 111719 | 1.861983 | |
| 0*38 | 0.503758 | 0.498158 | 48533.77 | 110892 | 1.8482 | |
| 0*37 | 0.503619 | 0.498219 | 50003.07 | 114741 | 1.91235 | |
| 0*3 | 0.503581 | 0.498881 | 50215.99 | 111575 | 1.859583 | |
| 0*18 | 0.50375 | 0.49815 | 52884.1 | 120598 | 2.009967 | |
| 0*30 | 0.503511 | 0.498611 | 52966.01 | 123203 | 2.053383 | |
| 0*6 | 0.503368 | 0.498868 | 55467.06 | 125845 | 2.097417 | |
| 0*8 | 0.503476 | 0.499077 | 56096.01 | 125986 | 2.099767 | |
| 0*28 | 0.503291 | 0.499491 | 60411.63 | 135295 | 2.254917 | |
| 0*7 | 0.503256 | 0.499456 | 64569.89 | 142200 | 2.37 | |
| 0*47 | 0.503086 | 0.499886 | 67707.4 | 147675 | 2.46125 | |
| 0*4 | 0.503037 | 0.50084 | 70608.87 | 155951 | 2.599183 | |
| 0*17 | 0.503267 | 0.501109 | 72017.99 | 156489 | 2.60815 | |
| 0*44 | 0.503364 | 0.500174 | 72019.38 | 156790 | 2.613167 | |
| 0*45 | 0.502973 | 0.500373 | 72615.19 | 157305 | 2.62175 | |
| 0*9 | 0.50308 | 0.50048 | 72920.47 | 157379 | 2.622983 | |
| 0*50 | 0.503098 | 0.500834 | 73901.24 | 162317 | 2.705283 | |
| 0*24 | 0.502874 | 0.501075 | 74839.92 | 162557 | 2.709283 | |
| 0*23 | 0.502903 | 0.501203 | 74969.03 | 162938 | 2.715633 | |
| 0*19 | 0.502897 | 0.50074 | 75722.1 | 165457 | 2.757617 | |
| 0*13 | 0.502945 | 0.501067 | 76511.02 | 170373 | 2.83955 | |
| 0*20 | 0.502779 | 0.500913 | 76613.24 | 165682 | 2.761367 | |
| 0*21 | 0.502754 | 0.501154 | 78554.36 | 170378 | 2.839633 | |
| 0*16 | 0.502863 | 0.500763 | 79751.51 | 186547 | 3.109117 | |
| 0*46 | 0.502553 | 0.501353 | 80005.62 | 171478 | 2.857967 | |
| 0*32 | 0.50252 | 0.50182 | 83654.15 | 180615 | 3.01025 | |
| 0*2 | 0.502641 | 0.501541 | 84550.08 | 180167 | 3.002783 | |
| 0*22 | 0.502473 | 0.501673 | 86017.23 | 185109 | 3.08515 | |
| 0*11 | 0.502387 | 0.501988 | 87989.04 | 187844 | 3.130733 | |
| 0*42 | 0.50239 | 0.50209 | 90076.06 | 193220 | 3.220333 | |
| 0*43 | 0.502098 | 0.502498 | 93610.47 | 201571 | 3.359517 | |
| 0*10 | 0.502299 | 0.502511 | 93919.15 | 213039 | 3.55065 | |
| 0*12 | 0.502466 | 0.502768 | 95686.91 | 203531 | 3.392183 | |
| 0*48 | 0.502223 | 0.502623 | 95741.22 | 201800 | 3.363333 | |
| 0*1 | 0.502221 | 0.503021 | 97086.1 | 204735 | 3.41225 | |
| 0*49 | 0.502118 | 0.503218 | 97346.76 | 204799 | 3.413317 | |
| 0*40 | 0.502179 | 0.503389 | 97427.12 | 204526 | 3.408767 | |
| 0*15 | 0.502229 | 0.502829 | 98331.42 | 216606 | 3.6101 | |
| 0*39 | 0.502076 | 0.503176 | 100795.5 | 211763 | 3.529383 | |
| 0*14 | 0.502212 | 0.503448 | 103378.9 | 224424 | 3.7404 | |
| 0*25 | 0.501949 | 0.503349 | 103918.8 | 218470 | 3.641167 | |
| 0*31 | 0.501894 | 0.50371 | 104757.8 | 227289 | 3.78815 | |
| 0*29 | 0.502027 | 0.503527 | 112442.9 | 234996 | 3.9166 | |
| 0*5 | 0.501786 | 0.503786 | 112862.4 | 239529 | 3.99215 | |
| 0*35 | 0.502023 | 0.504843 | 116743.7 | 243684 | 4.0614 | |
| 0*33 | 0.501833 | 0.504933 | 119631 | 248238 | 4.1373 |
?
?
?
| ? | ? | a | b | 迭代次數 | 時間ms | 時間min |
| 1*17 | 0.501511 | 0.505356 | 113085.8 | 235103 | 3.918383 | |
| 1*30 | 0.508745 | 0.512645 | 120761.4 | 243498 | 4.0583 | |
| 1*14 | 0.501444 | 0.504744 | 122373 | 255182 | 4.253033 | |
| 1*6 | 0.504215 | 0.508821 | 123439.5 | 261633 | 4.36055 | |
| 1*12 | 0.503918 | 0.509033 | 129424.3 | 267415 | 4.456917 | |
| 1*35 | 0.501017 | 0.506317 | 132802 | 266470 | 4.441167 | |
| 1*5 | 0.503435 | 0.508935 | 134629.3 | 282495 | 4.70825 | |
| 1*46 | 0.500885 | 0.506685 | 135243.7 | 271229 | 4.520483 | |
| 1*1 | 0.505469 | 0.512169 | 135295.5 | 302633 | 5.043883 | |
| 1*11 | 0.503724 | 0.508224 | 135336.4 | 281378 | 4.689633 | |
| 1*10 | 0.503584 | 0.5092 | 135825.9 | 282623 | 4.710383 | |
| 1*9 | 0.503415 | 0.508715 | 136958.3 | 281435 | 4.690583 | |
| 1*22 | 0.508187 | 0.514087 | 136999 | 279906 | 4.6651 | |
| 1*32 | 0.503518 | 0.508822 | 138253.6 | 277344 | 4.6224 | |
| 1*2 | 0.503662 | 0.508362 | 138619.9 | 174259 | 2.904317 | |
| 1*50 | 0.50053 | 0.50723 | 138767.7 | 277808 | 4.630133 | |
| 1*3 | 0.500866 | 0.506566 | 139057.3 | 317648 | 5.294133 | |
| 1*38 | 0.505616 | 0.511516 | 139506.7 | 279306 | 4.6551 | |
| 1*44 | 0.505531 | 0.512431 | 139982.5 | 280296 | 4.6716 | |
| 1*8 | 0.50095 | 0.50655 | 140646.4 | 287694 | 4.7949 | |
| 1*47 | 0.500705 | 0.507105 | 140681 | 281496 | 4.6916 | |
| 1*15 | 0.505747 | 0.512147 | 142043.2 | 293122 | 4.885367 | |
| 1*7 | 0.50086 | 0.50666 | 142070.6 | 295809 | 4.93015 | |
| 1*18 | 0.505487 | 0.512087 | 142772 | 292768 | 4.879467 | |
| 1*43 | 0.500936 | 0.506336 | 143081.6 | 287021 | 4.783683 | |
| 1*23 | 0.507865 | 0.515165 | 144089.6 | 294738 | 4.9123 | |
| 1*36 | 0.508275 | 0.514884 | 144472.9 | 289326 | 4.8221 | |
| 1*4 | 0.500699 | 0.506899 | 144642.3 | 316810 | 5.280167 | |
| 1*26 | 0.50094 | 0.50664 | 144746.8 | 295797 | 4.92995 | |
| 1*34 | 0.500629 | 0.507429 | 145520.8 | 291038 | 4.850633 | |
| 1*13 | 0.503092 | 0.509792 | 145810.5 | 299617 | 4.993617 | |
| 1*27 | 0.500582 | 0.507782 | 145828.5 | 296504 | 4.941733 | |
| 1*37 | 0.500709 | 0.507109 | 146633.2 | 292617 | 4.87695 | |
| 1*16 | 0.50313 | 0.51003 | 147017 | 304313 | 5.071883 | |
| 1*39 | 0.500637 | 0.507737 | 147505.9 | 300222 | 5.0037 | |
| 1*48 | 0.503003 | 0.510203 | 147777.1 | 295941 | 4.93235 | |
| 1*33 | 0.500784 | 0.507084 | 148811.9 | 297957 | 4.96595 | |
| 1*25 | 0.502923 | 0.510123 | 149811 | 304366 | 5.072767 | |
| 1*45 | 0.502981 | 0.51058 | 149999.9 | 298816 | 4.980267 | |
| 1*19 | 0.500294 | 0.508294 | 150626.6 | 306709 | 5.111817 | |
| 1*28 | 0.502889 | 0.510289 | 151403.7 | 306664 | 5.111067 | |
| 1*49 | 0.500599 | 0.507599 | 152002.6 | 304685 | 5.078083 | |
| 1*24 | 0.500305 | 0.508405 | 153926.4 | 312512 | 5.208533 | |
| 1*41 | 0.500378 | 0.508078 | 154345 | 307673 | 5.127883 | |
| 1*29 | 0.500624 | 0.507624 | 155807.4 | 313365 | 5.22275 | |
| 1*40 | 0.505116 | 0.513416 | 156111.3 | 311209 | 5.186817 | |
| 1*42 | 0.500343 | 0.508143 | 156573.8 | 311144 | 5.185733 | |
| 1*20 | 0.500362 | 0.508262 | 159081.9 | 323487 | 5.39145 | |
| 1*31 | 0.502814 | 0.510814 | 159971.4 | 317844 | 5.2974 | |
| 1*21 | 0.500206 | 0.508706 | 162120.7 | 242122 | 4.035367 |
?
?
0的迭代次數的范圍是31808-119631
1的迭代次數的范圍是113085-162120
1只有第17號圖片是小于119631的,所以這100張圖片的分類正確率可能達到99%.另外很明顯的可以發現外觀比較接近的圖片確實迭代次數也比較接近
比如這幾張長的比較飽滿的0,都被分在了一起,
這幾張長的比較像的也被分到了一起,
不過也有失手的時候,這張夾在44和47中的8就明顯的有問題。
?
這種圖就是神來之筆了,很細微的差別都找到了。
雖然統計樣本的數量還是太少,不過貌似迭代次數還可以作為比較圖片匹配度的一個很有力的工具。
?
本文所用數據同《用共振頻率去進行圖片分類的嘗試》中的數據
《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀總結
以上是生活随笔為你收集整理的用固定收敛标准网络的迭代次数比较两张图片的相似度的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 酒场上倒酒的礼仪是什么?
- 下一篇: 老是被蚊子咬,怎么回事?