用7*7的卷积核分类9*9的图片到底应该用几个卷积核?55个
(mnist 0,2)-con(7*7)*n-30*2-(1,0)(0,1)
用7*7的卷積核分類mnist的0和2,將圖片用間隔取點的辦法縮小到9*9。從1開始不斷增加卷積核的數量,觀察網絡的性能是如何隨著卷積核的數量的變化而變化的。卷積核的數量從1到80個,收斂標準δ=6e-5,每個收斂標準收斂199次,統計平均值。
得到的表格
| 卷積核數量 | f2[0] | f2[1] | 迭代次數n | 平均準確率p-ave | δ | 耗時ms/次 | 耗時ms/199次 | 耗時 min/199 | 最大值p-max |
| 0 | 5.12E-05 | 0.999949 | 3902.291 | 0.981170764 | 6E-05 | 88.13065 | 17538 | 0.2923 | 0.98508946 |
| 1 | 0.070397 | 0.929603 | 20632.15 | 0.976048233 | 6E-05 | 3830.975 | 762364 | 12.70607 | 0.98807157 |
| 2 | 0.055323 | 0.944677 | 10066.22 | 0.981190745 | 6E-05 | 4064.412 | 808821 | 13.48035 | 0.99005964 |
| 3 | 0.045275 | 0.954725 | 9838.578 | 0.983136358 | 6E-05 | 5983.166 | 1190666 | 19.84443 | 0.9915507 |
| 4 | 0.04025 | 0.959749 | 10507.51 | 0.984260268 | 6E-05 | 8212.638 | 1634323 | 27.23872 | 0.99005964 |
| 5 | 0.045275 | 0.954724 | 11317.55 | 0.984794749 | 6E-05 | 10963.5 | 2181743 | 36.36238 | 0.99055666 |
| 6 | 0.0503 | 0.9497 | 12220.42 | 0.986063518 | 6E-05 | 14357.38 | 2857119 | 47.61865 | 0.99204771 |
| 7 | 0.0503 | 0.9497 | 12511.11 | 0.986085997 | 6E-05 | 17324.5 | 3447606 | 57.4601 | 0.99105368 |
| 8 | 0.055325 | 0.944675 | 12953.54 | 0.986218368 | 6E-05 | 19259.08 | 3832562 | 63.87603 | 0.99055666 |
| 9 | 0.060349 | 0.939651 | 13212.72 | 0.986083499 | 6E-05 | 22801.35 | 4537477 | 75.62462 | 0.9915507 |
| 10 | 0.070399 | 0.929601 | 13858.86 | 0.985991089 | 6E-05 | 26756.56 | 5324559 | 88.74265 | 0.99105368 |
| 11 | 0.050301 | 0.949699 | 13970.17 | 0.986110972 | 6E-05 | 30042.34 | 5978441 | 99.64068 | 0.99005964 |
| 12 | 0.095522 | 0.904478 | 14633.67 | 0.986328262 | 6E-05 | 34040.11 | 6773982 | 112.8997 | 0.9915507 |
| 13 | 0.06035 | 0.93965 | 14635.27 | 0.986570527 | 6E-05 | 36556.97 | 7274847 | 121.2475 | 0.99055666 |
| 14 | 0.040252 | 0.959748 | 15115.74 | 0.986857748 | 6E-05 | 40630.01 | 8085373 | 134.7562 | 0.99055666 |
| 15 | 0.040252 | 0.959748 | 15257.14 | 0.986950158 | 6E-05 | 44476.87 | 8850903 | 147.5151 | 0.99105368 |
| 16 | 0.070399 | 0.929601 | 15574.31 | 0.986715386 | 6E-05 | 48814.78 | 9714154 | 161.9026 | 0.99105368 |
| 17 | 0.040252 | 0.959749 | 16061.62 | 0.987055057 | 6E-05 | 52596.1 | 10466632 | 174.4439 | 0.99055666 |
| 18 | 0.065374 | 0.934626 | 16315.92 | 0.986470624 | 6E-05 | 56323.53 | 11208402 | 186.8067 | 0.9915507 |
| 19 | 0.065374 | 0.934625 | 16508.11 | 0.986777826 | 6E-05 | 60294.17 | 11998554 | 199.9759 | 0.99105368 |
| 20 | 0.075424 | 0.924576 | 16817.97 | 0.986765338 | 6E-05 | 65534.99 | 13041471 | 217.3579 | 0.99105368 |
| 21 | 0.050301 | 0.949699 | 17031.53 | 0.986952656 | 6E-05 | 69008.7 | 13732733 | 228.8789 | 0.99055666 |
| 22 | 0.075423 | 0.924576 | 17151.65 | 0.986727874 | 6E-05 | 72677.69 | 14462863 | 241.0477 | 0.99105368 |
| 23 | 0.030203 | 0.969798 | 17133.17 | 0.987189926 | 6E-05 | 76695.43 | 15262409 | 254.3735 | 0.9915507 |
| 24 | 0.040252 | 0.959748 | 17515.32 | 0.987052559 | 6E-05 | 82230.77 | 16363928 | 272.7321 | 0.99055666 |
| 25 | 0.040252 | 0.959748 | 17703.49 | 0.987060052 | 6E-05 | 84932.23 | 16901520 | 281.692 | 0.99105368 |
| 26 | 0.040252 | 0.959748 | 17768.57 | 0.986850255 | 6E-05 | 88647.82 | 17640917 | 294.0153 | 0.99105368 |
| 27 | 0.040252 | 0.959748 | 17916.26 | 0.986650449 | 6E-05 | 93063.1 | 18519565 | 308.6594 | 0.9915507 |
| 28 | 0.025178 | 0.974822 | 18053.39 | 0.987227389 | 6E-05 | 97624.76 | 19427330 | 323.7888 | 0.99105368 |
| 29 | 0.020153 | 0.979847 | 18295.51 | 0.986795309 | 6E-05 | 101839.1 | 20265982 | 337.7664 | 0.99105368 |
| 30 | 0.045277 | 0.954723 | 18399.9 | 0.986585512 | 6E-05 | 106970.1 | 21287069 | 354.7845 | 0.99055666 |
| 31 | 0.055326 | 0.944674 | 18547.15 | 0.986750352 | 6E-05 | 112316.3 | 22350949 | 372.5158 | 0.99055666 |
| 32 | 0.035227 | 0.964773 | 18735.36 | 0.986910197 | 6E-05 | 117368.6 | 23356388 | 389.2731 | 0.99055666 |
| 33 | 0.025178 | 0.974821 | 18751.98 | 0.986767835 | 6E-05 | 119877.3 | 23855575 | 397.5929 | 0.99204771 |
| 34 | 0.025178 | 0.974822 | 18956.36 | 0.986905202 | 6E-05 | 123999.9 | 24675976 | 411.2663 | 0.99105368 |
| 35 | 0.035227 | 0.964773 | 18973.96 | 0.986960149 | 6E-05 | 128827.5 | 25636699 | 427.2783 | 0.99105368 |
| 36 | 0.065375 | 0.934625 | 19290.09 | 0.986745357 | 6E-05 | 133917.8 | 26649644 | 444.1607 | 0.99105368 |
| 37 | 0.015129 | 0.984871 | 19321.7 | 0.986940168 | 6E-05 | 138609.5 | 27583299 | 459.7217 | 0.99055666 |
| 38 | 0.030203 | 0.969797 | 19514.15 | 0.987334785 | 6E-05 | 143453.3 | 28547203 | 475.7867 | 0.99055666 |
| 39 | 0.025179 | 0.974821 | 19587.36 | 0.98708253 | 6E-05 | 147297.2 | 29312150 | 488.5358 | 0.99005964 |
| 40 | 0.035228 | 0.964772 | 19722.02 | 0.986790313 | 6E-05 | 152170.6 | 30281953 | 504.6992 | 0.9915507 |
| 41 | 0.055326 | 0.944674 | 20288.63 | 0.986960149 | 6E-05 | 160508.8 | 31941260 | 532.3543 | 0.99105368 |
| 42 | 0.025179 | 0.974822 | 20299.15 | 0.987542084 | 6E-05 | 166147.5 | 33063354 | 551.0559 | 0.9915507 |
| 43 | 0.030203 | 0.969797 | 20389.92 | 0.987399722 | 6E-05 | 169560 | 33742443 | 562.374 | 0.9915507 |
| 44 | 0.050302 | 0.949698 | 20286 | 0.987152462 | 6E-05 | 172557.2 | 34338875 | 572.3146 | 0.99105368 |
| 45 | 0.035228 | 0.964772 | 20769.8 | 0.98733978 | 6E-05 | 180348.7 | 35889392 | 598.1565 | 0.99055666 |
| 46 | 0.050302 | 0.949698 | 20710.6 | 0.987264853 | 6.00E-05 | 183306.5 | 28475139 | 474.5857 | 0.99055666 |
| 47 | 0.040253 | 0.959747 | 20967.33 | 0.987262355 | 6.00E-05 | 189763.4 | 37762919 | 629.382 | 0.99105368 |
| 48 | 0.025179 | 0.974821 | 21204.71 | 0.987564562 | 6.00E-05 | 198105.6 | 39423024 | 657.0504 | 0.9915507 |
| 49 | 0.0704 | 0.9296 | 21164.01 | 0.987239877 | 6.00E-05 | 200278 | 39855317 | 664.2553 | 0.99105368 |
| 50 | 0.035228 | 0.964772 | 21487.3 | 0.987437186 | 6.00E-05 | 206871.4 | 41167437 | 686.124 | 0.99055666 |
| 51 | 0.030204 | 0.969796 | 21826.14 | 0.987679451 | 6.00E-05 | 217693 | 43320919 | 722.0153 | 0.99055666 |
| 52 | 0.025179 | 0.974821 | 21922.72 | 0.987522104 | 6.00E-05 | 221511.2 | 44080724 | 734.6787 | 0.99105368 |
| 53 | 0.040253 | 0.959747 | 21895.37 | 0.987587041 | 6.00E-05 | 225604.6 | 44895313 | 748.2552 | 0.99105368 |
| 54 | 0.050302 | 0.949698 | 21945.7 | 0.987504621 | 6.00E-05 | 228949.1 | 45560879 | 759.348 | 0.99105368 |
| 55 | 0.030204 | 0.969796 | 22174.63 | 0.987866769 | 6.00E-05 | 247632.6 | 49278886 | 821.3148 | 0.99105368 |
| 56 | 0.050302 | 0.949698 | 22110.97 | 0.987562065 | 6.00E-05 | 252150.5 | 50177946 | 836.2991 | 0.9915507 |
| 57 | 0.075425 | 0.924575 | 22601.62 | 0.987492133 | 6.00E-05 | 262331.3 | 52203932 | 870.0655 | 0.99105368 |
| 58 | 0.0704 | 0.9296 | 22891.24 | 0.987806827 | 6.00E-05 | 270364.6 | 53802585 | 896.7098 | 0.99105368 |
| 59 | 0.065376 | 0.934624 | 22563.98 | 0.987651978 | 6.00E-05 | 271767.2 | 54081693 | 901.3616 | 0.99105368 |
| 60 | 0.055327 | 0.944673 | 22942.36 | 0.987651978 | 6.00E-05 | 280447.3 | 55809033 | 930.1506 | 0.99105368 |
| 61 | 0.065376 | 0.934624 | 23127.13 | 0.987656973 | 6.00E-05 | 289227.6 | 57556299 | 959.2716 | 0.99055666 |
| 62 | 0.055326 | 0.944673 | 22860.31 | 0.987612016 | 6.00E-05 | 289426.2 | 57595815 | 959.9302 | 0.9915507 |
| 63 | 0.085474 | 0.914526 | 23393.73 | 0.987839296 | 6.00E-05 | 299898.6 | 59679828 | 994.6638 | 0.99105368 |
| 64 | 0.060351 | 0.939648 | 23175.95 | 0.987607021 | 6.00E-05 | 301862.2 | 60070575 | 1001.176 | 0.99105368 |
| 65 | 0.105572 | 0.894428 | 23395.98 | 0.987569558 | 6.00E-05 | 308436.1 | 61378787 | 1022.98 | 0.99204771 |
| 66 | 0.105572 | 0.894428 | 23273.58 | 0.987384737 | 6.00E-05 | 311690.8 | 62026478 | 1033.775 | 0.99105368 |
| 67 | 0.090498 | 0.909502 | 23471.68 | 0.987509616 | 6.00E-05 | 319499.6 | 63580415 | 1059.674 | 0.99105368 |
| 68 | 0.085474 | 0.914526 | 23482.75 | 0.987836798 | 6.00E-05 | 324154.8 | 64506814 | 1075.114 | 0.99055666 |
| 69 | 0.130695 | 0.869305 | 23929.98 | 0.987374747 | 6.00E-05 | 333943.9 | 66454844 | 1107.581 | 0.99105368 |
| 70 | 0.140744 | 0.859256 | 23795.19 | 0.98740222 | 6.00E-05 | 339105.1 | 67481909 | 1124.698 | 0.99105368 |
| 71 | 0.075425 | 0.924575 | 23580.36 | 0.987477147 | 6.00E-05 | 341062.3 | 67871399 | 1131.19 | 0.99055666 |
| 72 | 0.145769 | 0.854231 | 23681.89 | 0.987442181 | 6.00E-05 | 347526.4 | 69157753 | 1152.629 | 0.9915507 |
| 73 | 0.196014 | 0.803986 | 23841.98 | 0.987119994 | 6.00E-05 | 353999.3 | 70445858 | 1174.098 | 0.99055666 |
| 74 | 0.185966 | 0.814035 | 24208.59 | 0.987244873 | 6.00E-05 | 362708.4 | 72178971 | 1202.983 | 0.99055666 |
| 75 | 0.170892 | 0.829108 | 23802.86 | 0.98724737 | 6.00E-05 | 363907.1 | 72417503 | 1206.958 | 0.99055666 |
| 76 | 0.160842 | 0.839158 | 24353.72 | 0.987334785 | 6.00E-05 | 375980.6 | 74820141 | 1247.002 | 0.99055666 |
| 77 | 0.185966 | 0.814035 | 24083.91 | 0.986957651 | 6.00E-05 | 374982.4 | 74621492 | 1243.692 | 0.99105368 |
| 78 | 0.206063 | 0.793937 | 24215.16 | 0.987192423 | 6.00E-05 | 381791.1 | 75976421 | 1266.274 | 0.99055666 |
| 79 | 0.160842 | 0.839158 | 24249.91 | 0.987127486 | 6.00E-05 | 393548.7 | 78316197 | 1305.27 | 0.99105368 |
| 80 | 0.155818 | 0.844182 | 24367.54 | 0.987075037 | 6.00E-05 | 393758.5 | 78357947 | 1305.966 | 0.99055666 |
這次實驗共持續了超過4.5萬分鐘,共收集了81組數據。卷積核數量=0就是三層的無核的網絡。將pave曲線畫成圖
?
這是卷積核從0到80的圖,可以觀察到這個圖有一個頂點的。頂點為55。
?
這是卷積核從10到55的圖,網絡的性能隨著卷積核的數量的增加而增加。7*7卷積核的上升區間有55個核,對應5*5卷積核的上升區間為16個核,3*3卷積核的上升區間為4個核。
這個現象清楚的表明在網絡結構不變的前提下,卷積核越大對應的上升區間越大。
?
這是卷積核從40到80的圖,這張圖的第三高的峰出現在68個核,68與55兩者的對應的性能數值差異僅為0.000029。表明網絡性能下降有一個大約為13個核的緩沖區間。但當卷積核的數量大于68以后網絡的性能迅速下降。
因此到底應該用3*3的卷積核還是用5*5的卷積核還是7*7的卷積核?
| ? | 3*3 | 5*5 | 7*7 | 5*5/3*3 | 7*7/5*5 |
| ? | 平均準確率p-ave | 平均準確率p-ave | 平均準確率p-ave | ? | |
| ? | 6.00E-05 | 6.00E-05 | 6.00E-05 | ? | ? |
| 0 | 0.981171 | 0.981171 | 0.981171 | 1 | 1 |
| 1 | 0.975916 | 0.978588 | 0.976048 | 1.002738 | 0.997405 |
| 2 | 0.981326 | 0.983376 | 0.981191 | 1.002089 | 0.997778 |
| 3 | 0.983633 | 0.985159 | 0.983136 | 1.001551 | 0.997947 |
| 4 | 0.983651 | 0.986268 | 0.98426 | 1.00266 | 0.997964 |
| 5 | 0.983289 | 0.986143 | 0.984795 | 1.002903 | 0.998633 |
| 6 | 0.983506 | 0.986323 | 0.986064 | 1.002864 | 0.999737 |
| 7 | 0.982744 | 0.986605 | 0.986086 | 1.003929 | 0.999474 |
| 8 | 0.982694 | 0.98689 | 0.986218 | 1.00427 | 0.999319 |
| 9 | 0.981885 | 0.98697 | 0.986083 | 1.005179 | 0.999102 |
| 10 | 0.980983 | 0.986988 | 0.985991 | 1.006121 | 0.99899 |
| 11 | 0.981401 | 0.987225 | 0.986111 | 1.005934 | 0.998872 |
| 12 | 0.98214 | 0.986988 | 0.986328 | 1.004936 | 0.999332 |
| 13 | ? | 0.987295 | 0.986571 | ? | 0.999266 |
| 14 | ? | 0.987132 | 0.986858 | ? | 0.999722 |
| 15 | ? | 0.987065 | 0.98695 | ? | 0.999884 |
| 16 | ? | 0.987322 | 0.986715 | ? | 0.999386 |
| 17 | ? | 0.987227 | 0.987055 | ? | 0.999826 |
| 18 | ? | 0.98672 | 0.986471 | ? | 0.999747 |
| 19 | ? | 0.987137 | 0.986778 | ? | 0.999636 |
| 20 | ? | 0.986988 | 0.986765 | ? | 0.999774 |
| 21 | ? | 0.986855 | 0.986953 | ? | 1.000099 |
| 22 | ? | 0.986241 | 0.986728 | ? | 1.000494 |
| 23 | ? | 0.986468 | 0.98719 | ? | 1.000732 |
?
7*7卷積核的上升區間為55,5*5卷積核的上升區間為16。當卷積核數量大于20以后7*7卷積核的性能優于5*5卷積核。
| 2分類 | 3*3 | 5*5 | 7*7 |
| 性能上升區間 | 4 | 16 | 55 |
| max-p-ave | 0.9838731 | 0.987322 | 0.987867 |
| 耗時min/199次 | 11.6074 | 102.3604 | 821.3148 |
?
至少僅就這三次實驗來說,卷積核越大網絡的性能上升區間越大,上升區間越大性能峰值越大。但代價是卷積核越多網絡越慢,7*7卷積核的性能峰值比5*5卷積核峰值要好0.5‰,但為了這萬分之5要多花8倍的時間。
?
總結
以上是生活随笔為你收集整理的用7*7的卷积核分类9*9的图片到底应该用几个卷积核?55个的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 吸引纠缠的双白矮星和迭代收敛的神经网络
- 下一篇: 用9*9的卷积核分类9*9的图片