久久精品国产精品国产精品污,男人扒开添女人下部免费视频,一级国产69式性姿势免费视频,夜鲁夜鲁很鲁在线视频 视频,欧美丰满少妇一区二区三区,国产偷国产偷亚洲高清人乐享,中文 在线 日韩 亚洲 欧美,熟妇人妻无乱码中文字幕真矢织江,一区二区三区人妻制服国产

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

关于 UDP Hole Punching 的资料

發布時間:2025/4/5 编程问答 19 豆豆
生活随笔 收集整理的這篇文章主要介紹了 关于 UDP Hole Punching 的资料 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

平時用兩臺電腦,一臺 Win, 一臺Mac,在這兩個平臺上進行文件傳送非常不方便,

原因是公司不讓用企鵝傳公司內部文件。

于是想自己寫一個傳送文件的工具,

服務器使用 GAE,開發語言可以選擇 Python 或者 Go(最近學習了下 Go,正好練練手)。

客戶端打算用 Python,至于是否帶 GUI 還沒考慮好。

寫這個程序,對于我來說主要問題在于 UDP 這塊,一個是保證正確性,一個是 UDP Hole Punching技術。

=========================================================

ref:http://www.brynosaurus.com/pub/net/p2pnat/


Peer-to-Peer Communication Across Network Address Translators

Bryan Ford
Massachusetts Institute of Technology
baford?(at)?mit.edu

Pyda Srisuresh
Caymas Systems, Inc.
srisuresh?(at)?yahoo.com

Dan Kegel
dank?(at)?kegel.com

J'fais des trous, des petits trous?
toujours des petits trous?
???? - S. Gainsbourg

Abstract:

Network Address Translation (NAT) causes well-known difficulties for peer-to-peer (P2P) communication, since the peers involved may not be reachable at any globally valid IP address. Several NAT traversal techniques are known, but their documentation is slim, and data about their robustness or relative merits is slimmer. This paper documents and analyzes one of the simplest but most robust and practical NAT traversal techniques, commonly known as “hole punching.” Hole punching is moderately well-understood for UDP communication, but we show how it can be reliably used to set up peer-to-peer TCP streams as well. After gathering data on the reliability of this technique on a wide variety of deployed NATs, we find that about 82% of the NATs tested support hole punching for UDP, and about 64% support hole punching for TCP streams. As NAT vendors become increasingly conscious of the needs of important P2P applications such as Voice over IP and online gaming protocols, support for hole punching is likely to increase in the future.

1 Introduction

The combined pressures of tremendous growth and massive security challenges have forced the Internet to evolve in ways that make life difficult for many applications. The Internet's original uniform address architecture, in which every node has a globally unique IP address and can communicate directly with every other node, has been replaced with a new?de facto?Internet address architecture, consisting of a global address realm and many private address realms interconnected by Network Address Translators (NAT). In this new address architecture, illustrated in Figure?1, only nodes in the “main,” global address realm can be easily contacted from anywhere in the network, because only they have unique, globally routable IP addresses. Nodes on private networks can connect to other nodes on the same private network, and they can usually open TCP or UDP connections to “well-known” nodes in the global address realm. NATs on the path allocate temporary public endpoints for outgoing connections, and translate the addresses and port numbers in packets comprising those sessions, while generally blocking all incoming traffic unless otherwise specifically configured.

Figure 1:?Public and private IP address domains

The Internet's new?de facto?address architecture is suitable for client/server communication in the typical case when the client is on a private network and the server is in the global address realm. The architecture makes it difficult for two nodes on?different?private networks to contact each other directly, however, which is often important to the “peer-to-peer” communication protocols used in applications such as teleconferencing and online gaming. We clearly need a way to make such protocols function smoothly in the presence of NAT.

One of the most effective methods of establishing peer-to-peer communication between hosts on different private networks is known as “hole punching.” This technique is widely used already in UDP-based applications, but essentially the same technique also works for TCP. Contrary to what its name may suggest, hole punching does not compromise the security of a private network. Instead, hole punching enables applications to function?within?the the default security policy of most NATs, effectively signaling to NATs on the path that peer-to-peer communication sessions are “solicited” and thus should be accepted. This paper documents hole punching for both UDP and TCP, and details the crucial aspects of both application and NAT behavior that make hole punching work.

Unfortunately, no traversal technique works with all existing NATs, because NAT behavior is not standardized. This paper presents some experimental results evaluating hole punching support in current NATs. Our data is derived from results submitted by users throughout the Internet by running our “NAT Check” tool over a wide variety of NATs by different vendors. While the data points were gathered from a “self-selecting” user community and may not be representative of the true distribution of NAT implementations deployed on the Internet, the results are nevertheless generally encouraging.

While evaluating basic hole punching, we also point out variations that can make hole punching work on a wider variety of existing NATs at the cost of greater complexity. Our primary focus, however, is on developing the?simplest?hole punching technique that works cleanly and robustly in the presence of “well-behaved” NATs in any reasonable network topology. We deliberately avoid excessively clever tricks that may increase compatibility with some existing “broken” NATs in the short term, but which only work some of the time and may cause additional unpredictability and network brittleness in the long term.

Although the larger address space of IPv6?[3] may eventually reduce the need for NAT, in the short term IPv6 is?increasing?the demand for NAT, because NAT itself provides the easiest way to achieve interoperability between IPv4 and IPv6 address domains?[24]. Further, the anonymity and inaccessibility of hosts on private networks has widely perceived security and privacy benefits. Firewalls are unlikely to go away even when there are enough IP addresses: IPv6 firewalls will still commonly block unsolicited incoming traffic by default, making hole punching useful even to IPv6 applications.

The rest of this paper is organized as follows. Section?2?introduces basic terminology and NAT traversal concepts. Section?3?details hole punching for UDP, and Section?4?introduces hole punching for TCP. Section?5?summarizes important properties a NAT must have in order to enable hole punching. Section?6?presents our experimental results on hole punching support in popular NATs, Section?7?discusses related work, and Section?8?concludes.

2 General Concepts

This section introduces basic NAT terminology used throughout the paper, and then outlines general NAT traversal techniques that apply equally to TCP and UDP.

2.1 NAT Terminology

This paper adopts the NAT terminology and taxonomy defined in RFC 2663?[21], as well as additional terms defined more recently in RFC 3489?[19].

Of particular importance is the notion of session. A?session endpoint?for TCP or UDP is an (IP address, port number) pair, and a particular?session?is uniquely identified by its two session endpoints. From the perspective of one of the hosts involved, a session is effectively identified by the 4-tuple (local IP, local port, remote IP, remote port). The?direction?of a session is normally the flow direction of the packet that initiates the session: the initial SYN packet for TCP, or the first user datagram for UDP.

Of the various flavors of NAT, the most common type is?traditional?or?outbound?NAT, which provides an asymmetric bridge between a private network and a public network. Outbound NAT by default allows only outbound sessions to traverse the NAT: incoming packets are dropped unless the NAT identifies them as being part of an existing session initiated from within the private network. Outbound NAT conflicts with peer-to-peer protocols because when both peers desiring to communicate are “behind” (on the private network side of) two different NATs, whichever peer tries to initiate a session, the other peer's NAT rejects it. NAT traversal entails making P2P sessions look like “outbound” sessions to?both?NATs.

Outbound NAT has two sub-varieties:?Basic NAT, which only translates IP addresses, and?Network Address/Port Translation?(NAPT), which translates entire session endpoints. NAPT, the more general variety, has also become the most common because it enables the hosts on a private network to share the use of a?single?public IP address. Throughout this paper we assume NAPT, though the principles and techniques we discuss apply equally well (if sometimes trivially) to Basic NAT.

2.2 Relaying

The most reliable--but least efficient--method of P2P communication across NAT is simply to make the communication look to the network like standard client/server communication, through relaying. Suppose two client hosts??and??have each initiated TCP or UDP connections to a well-known server?, at?'s global IP address 18.181.0.31 and port number 1234. As shown in Figure?2, the clients reside on separate private networks, and their respective NATs prevent either client from directly initiating a connection to the other. Instead of attempting a direct connection, the two clients can simply use the server??to relay messages between them. For example, to send a message to client?, client??simply sends the message to server??along its already-established client/server connection, and server??forwards the message on to client??using its existing client/server connection with?.

Figure 2:?NAT Traversal by Relaying

Relaying always works as long as both clients can connect to the server. Its disadvantages are that it consumes the server's processing power and network bandwidth, and communication latency between the peering clients is likely increased even if the server is well-connected. Nevertheless, since there is no more efficient technique that works reliably on all existing NATs, relaying is a useful fall-back strategy if maximum robustness is desired. The TURN protocol?[18] defines a method of implementing relaying in a relatively secure fashion.

2.3 Connection Reversal

Some P2P applications use a straightforward but limited technique, known as?connection reversal, to enable communication when both hosts have connections to a well-known rendezvous server??and only one of the peers is behind a NAT, as shown in Figure?3. If??wants to initiate a connection to?, then a direct connection attempt works automatically, because??is not behind a NAT and?'s NAT interprets the connection as an outgoing session. If??wants to initiate a connection to?, however, any direct connection attempt to??is blocked by?'s NAT.??can instead relay a connection request to??through a well-known server?, asking??to attempt a “reverse” connection back to?. Despite the obvious limitations of this technique, the central idea of using a well-known rendezvous server as an intermediary to help set up direct peer-to-peer connections is fundamental to the more general hole punching techniques described next.

Figure 3:?NAT Traversal by Connection Reversal

3 UDP Hole Punching

UDP hole punching enables two clients to set up a direct peer-to-peer UDP session with the help of a well-known rendezvous server, even if the clients are both behind NATs. This technique was mentioned in section 5.1 of RFC 3027?[10], documented more thoroughly elsewhere on the Web?[13], and used in recent experimental Internet protocols?[17,11]. Various proprietary protocols, such as those for on-line gaming, also use UDP hole punching.

3.1 The Rendezvous Server

Hole punching assumes that the two clients,??and?, already have active UDP sessions with a rendezvous server?. When a client registers with?, the server records?two?endpoints for that client: the (IP address, UDP port) pair that the client?believes?itself to be using to talk with?, and the (IP address, UDP port) pair that the server?observes?the client to be using to talk with it. We refer to the first pair as the client's?private?endpoint and the second as the client's?public?endpoint. The server might obtain the client's private endpoint from the client itself in a field in the body of the client's registration message, and obtain the client's public endpoint from the source IP address and source UDP port fields in the IP and UDP headers of that registration message. If the client is?not?behind a NAT, then its private and public endpoints should be identical.

A few poorly behaved NATs are known to scan the body of UDP datagrams for 4-byte fields that look like IP addresses, and translate them as they would the IP address fields in the IP header. To be robust against such behavior, applications may wish to obfuscate IP addresses in messages bodies slightly, for example by transmitting the one's complement of the IP address instead of the IP address itself. Of course, if the application is encrypting its messages, then this behavior is not likely to be a problem.

3.2 Establishing Peer-to-Peer Sessions

Suppose client??wants to establish a UDP session directly with client?. Hole punching proceeds as follows:

  • ?initially does not know how to reach?, so??asks??for help establishing a UDP session with?.
  • ?replies to??with a message containing?'s public?and?private endpoints. At the same time,??uses its UDP session with??to send??a connection request message containing?'s public and private endpoints. Once these messages are received,??and??know each other's public and private endpoints.
  • When??receives?'s public and private endpoints from?,??starts sending UDP packets to?both?of these endpoints, and subsequently “locks in” whichever endpoint first elicits a valid response from?. Similarly, when??receives?'s public and private endpoints in the forwarded connection request,??starts sending UDP packets to??at each of?'s known endpoints, locking in the first endpoint that works. The order and timing of these messages are not critical as long as they are asynchronous.
  • We now consider how UDP hole punching handles each of three specific network scenarios. In the first situation, representing the “easy” case, the two clients actually reside behind the same NAT, on one private network. In the second, most common case, the clients reside behind different NATs. In the third scenario, the clients each reside behind?two?levels of NAT: a common “first-level” NAT deployed by an ISP for example, and distinct “second-level” NATs such as consumer NAT routers for home networks.

    It is in general difficult or impossible for the application itself to determine the exact physical layout of the network, and thus which of these scenarios (or the many other possible ones) actually applies at a given time. Protocols such as STUN?[19] can provide some information about the NATs present on a communication path, but this information may not always be complete or reliable, especially when multiple levels of NAT are involved. Nevertheless, hole punching works automatically in all of these scenarios?without?the application having to know the specific network organization, as long as the NATs involved behave in a reasonable fashion. (“Reasonable” behavior for NATs will be described later in Section?5.)

    3.3 Peers Behind a Common NAT

    First consider the simple scenario in which the two clients (probably unknowingly) happen to reside behind the same NAT, and are therefore located in the same private IP address realm, as shown in Figure?4. Client??has established a UDP session with server?, to which the common NAT has assigned its own public port number 62000. Client??has similarly established a session with?, to which the NAT has assigned public port number 62005.

    Figure 4:?UDP Hole Punching, Peers Behind a Common NAT

    Suppose that client??uses the hole punching technique outlined above to establish a UDP session with?, using server??as an introducer. Client??sends??a message requesting a connection to?.??responds to??with?'s public and private endpoints, and also forwards?'s public and private endpoints to?. Both clients then attempt to send UDP datagrams to each other directly at each of these endpoints. The messages directed to the public endpoints may or may not reach their destination, depending on whether or not the NAT supports hairpin translation as described below in Section?3.5. The messages directed at the private endpoints?do?reach their destinations, however, and since this direct route through the private network is likely to be faster than an indirect route through the NAT anyway, the clients are most likely to select the private endpoints for subsequent regular communication.

    By assuming that NATs support hairpin translation, the application might dispense with the complexity of trying private as well as public endpoints, at the cost of making local communication behind a common NAT unnecessarily pass through the NAT. As our results in Section?6?show, however, hairpin translation is still much less common among existing NATs than are other “P2P-friendly” NAT behaviors. For now, therefore, applications may benefit substantially by using both public and private endpoints.

    3.4 Peers Behind Different NATs

    Suppose clients??and??have private IP addresses behind different NATs, as shown in Figure?5.??and??have each initiated UDP communication sessions from their local port 4321 to port 1234 on server?. In handling these outbound sessions, NAT??has assigned port 62000 at its own public IP address, 155.99.25.11, for the use of?'s session with?, and NAT??has assigned port 31000 at its IP address, 138.76.29.7, to?'s session with?.

    Figure 5:?UDP Hole Punching, Peers Behind Different NATs

    In?'s registration message to?,??reports its private endpoint to??as 10.0.0.1:4321, where 10.0.0.1 is?'s IP address on its own private network.??records?'s reported private endpoint, along with?'s public endpoint as observed by??itself.?'s public endpoint in this case is 155.99.25.11:62000, the temporary endpoint assigned to the session by the NAT. Similarly, when client??registers,??records?'s private endpoint as 10.1.1.3:4321 and?'s public endpoint as 138.76.29.7:31000.

    Now client??follows the hole punching procedure described above to establish a UDP communication session directly with?. First,??sends a request message to??asking for help connecting with?. In response,??sends?'s public and private endpoints to?, and sends?'s public and private endpoints to?.??and??each start trying to send UDP datagrams directly to each of these endpoints.

    Since??and??are on different private networks and their respective private IP addresses are not globally routable, the messages sent to these endpoints will reach either the wrong host or no host at all. Because many NATs also act as DHCP servers, handing out IP addresses in a fairly deterministic way from a private address pool usually determined by the NAT vendor by default, it is quite likely in practice that?'s messages directed at?'s private endpoint will reach?some?(incorrect) host on?'s private network that happens to have the same private IP address as??does. Applications must therefore authenticate all messages in some way to filter out such stray traffic robustly. The messages might include application-specific names or cryptographic tokens, for example, or at least a random nonce pre-arranged through?.

    Now consider?'s first message sent to?'s public endpoint, as shown in Figure?5. As this outbound message passes through?'s NAT, this NAT notices that this is the first UDP packet in a new outgoing session. The new session's source endpoint (10.0.0.1:4321) is the same as that of the existing session between??and?, but its destination endpoint is different. If NAT??is well-behaved, it preserves the identity of?'s private endpoint, consistently translating?all?outbound sessions from private source endpoint 10.0.0.1:4321 to the corresponding public source endpoint 155.99.25.11:62000.?'s first outgoing message to?'s public endpoint thus, in effect, “punches a hole” in?'s NAT for a new UDP session identified by the endpoints (10.0.0.1:4321, 138.76.29.7:31000) on?'s private network, and by the endpoints (155.99.25.11:62000, 138.76.29.7:31000) on the main Internet.

    If?'s message to?'s public endpoint reaches?'s NAT before?'s first message to??has crossed?'s own NAT, then?'s NAT may interpret?'s inbound message as unsolicited incoming traffic and drop it.?'s first message to?'s public address, however, similarly opens a hole in?'s NAT, for a new UDP session identified by the endpoints (10.1.1.3:4321, 155.99.25.11:62000) on?'s private network, and by the endpoints (138.76.29.7:31000, 155.99.25.11:62000) on the Internet. Once the first messages from??and??have crossed their respective NATs, holes are open in each direction and UDP communication can proceed normally. Once the clients have verified that the public endpoints work, they can stop sending messages to the alternative private endpoints.

    3.5 Peers Behind Multiple Levels of NAT

    In some topologies involving multiple NAT devices, two clients cannot establish an “optimal” P2P route between them without specific knowledge of the topology. Consider a final scenario, depicted in Figure?6. Suppose NAT??is a large industrial NAT deployed by an internet service provider (ISP) to multiplex many customers onto a few public IP addresses, and NATs??and??are small consumer NAT routers deployed independently by two of the ISP's customers to multiplex their private home networks onto their respective ISP-provided IP addresses. Only server??and NAT??have globally routable IP addresses; the “public” IP addresses used by NAT??and NAT??are actually private to the ISP's address realm, while client?'s and?'s addresses in turn are private to the addressing realms of NAT??and NAT?, respectively. Each client initiates an outgoing connection to server??as before, causing NATs??and??each to create a single public/private translation, and causing NAT??to establish a public/private translation for each session.

    Figure 6:?UDP Hole Punching, Peers Behind Multiple Levels of NAT

    Now suppose??and??attempt to establish a direct peer-to-peer UDP connection via hole punching. The optimal routing strategy would be for client??to send messages to client?'s “semi-public” endpoint at NAT?, 10.0.1.2:55000 in the ISP's addressing realm, and for client??to send messages to?'s “semi-public” endpoint at NAT?, namely 10.0.1.1:45000. Unfortunately,??and??have no way to learn these addresses, because server??only sees the truly global public endpoints of the clients, 155.99.25.11:62000 and 155.99.25.11:62005 respectively. Even if??and??had some way to learn these addresses, there is still no guarantee that they would be usable, because the address assignments in the ISP's private address realm might conflict with unrelated address assignments in the clients' private realms. (NAT?'s IP address in NAT?'s realm might just as easily have been 10.1.1.3, for example, the same as client?'s private address in NAT?'s realm.)

    The clients therefore have no choice but to use their global public addresses as seen by??for their P2P communication, and rely on NAT??providing?hairpin?or?loopback?translation. When??sends a UDP datagram to?'s global endpoint, 155.99.25.11:62005, NAT??first translates the datagram's source endpoint from 10.0.0.1:4321 to 10.0.1.1:45000. The datagram now reaches NAT?, which recognizes that the datagram's destination address is one of NAT?'s own translated?public?endpoints. If NAT??is well-behaved, it then translates?both?the source and destination addresses in the datagram and “loops” the datagram back onto the private network, now with a source endpoint of 155.99.25.11:62000 and a destination endpoint of 10.0.1.2:55000. NAT??finally translates the datagram's destination address as the datagram enters?'s private network, and the datagram reaches?. The path back to?works similarly. Many NATs do not yet support hairpin translation, but it is becoming more common as NAT vendors become aware of this issue.

    3.6 UDP Idle Timeouts

    Since the UDP transport protocol provides NATs with no reliable, application-independent way to determine the lifetime of a session crossing the NAT, most NATs simply associate an idle timer with UDP translations, closing the hole if no traffic has used it for some time period. There is unfortunately no standard value for this timer: some NATs have timeouts as short as 20 seconds. If the application needs to keep an idle UDP session active after establishing the session via hole punching, the application must send periodic keep-alive packets to ensure that the relevant translation state in the NATs does not disappear.

    Unfortunately, many NATs associate UDP idle timers with individual UDP sessions defined by a particular pair of endpoints, so sending keep-alives on one session will not keep other sessions active even if all the sessions originate from the same private endpoint. Instead of sending keep-alives on many different P2P sessions, applications can avoid excessive keep-alive traffic by detecting when a UDP session no longer works, and re-running the original hole punching procedure again “on demand.”

    4 TCP Hole Punching

    Establishing peer-to-peer TCP connections between hosts behind NATs is slightly more complex than for UDP, but TCP hole punching is remarkably similar at the protocol level. Since it is not as well-understood, it is currently supported by fewer existing NATs. When the NATs involved?do?support it, however, TCP hole punching is just as fast and reliable as UDP hole punching. Peer-to-peer TCP communication across well-behaved NATs may in fact be?more?robust than UDP communication, because unlike UDP, the TCP protocol's state machine gives NATs on the path a standard way to determine the precise lifetime of a particular TCP session.

    4.1 Sockets and TCP Port Reuse

    The main practical challenge to applications wishing to implement TCP hole punching is not a protocol issue but an application programming interface (API) issue. Because the standard Berkeley sockets API was designed around the client/server paradigm, the API allows a TCP stream socket to be used to initiate an outgoing connection via?connect(), or to listen for incoming connections via?listen()?and?accept(),?but not both. Further, TCP sockets usually have a one-to-one correspondence to TCP port numbers on the local host: after the application binds one socket to a particular local TCP port, attempts to bind a second socket to the same TCP port fail.

    For TCP hole punching to work, however, we need to use a single local TCP port to listen for incoming TCP connections and to initiate multiple outgoing TCP connections concurrently. Fortunately, all major operating systems support a special TCP socket option, commonly named?SO_REUSEADDR, which allows the application to bind multiple sockets to the same local endpoint as long as this option is set on all of the sockets involved. BSD systems have introduced a?SO_REUSEPORT?option that controls port reuse separately from address reuse; on such systems?both?of these options must be set.

    4.2 Opening Peer-to-Peer TCP Streams

    Suppose that client??wishes to set up a TCP connection with client?. We assume as usual that both??and??already have active TCP connections with a well-known rendezvous server?. The server records each registered client's public and private endpoints, just as for UDP. At the protocol level, TCP hole punching works almost exactly as for UDP:

  • Client??uses its active TCP session with??to ask??for help connecting to?.
  • ?replies to??with?'s public and private TCP endpoints, and at the same time sends?'s public and private endpoints to?.
  • From?the same local TCP ports?that??and??used to register with?,??and??each asynchronously make outgoing connection attempts to the other's public and private endpoints as reported by?, while simultaneously listening for incoming connections on their respective local TCP ports.
  • ?and??wait for outgoing connection attempts to succeed, and/or for incoming connections to appear. If one of the outgoing connection attempts fails due to a network error such as “connection reset” or “host unreachable,” the host simply re-tries that connection attempt after a short delay (e.g., one second), up to an application-defind maximum timeout period.
  • When a TCP connection is made, the hosts authenticate each other to verify that they connected to the intended host. If authentication fails, the clients close that connection and continue waiting for others to succeed. The clients use the first successfully authenticated TCP stream resulting from this process.
  • Unlike with UDP, where each client only needs one socket to communicate with both??and any number of peers simultaneously, with TCP each client application must manage several sockets bound to a single local TCP port on that client node, as shown in Figure?7. Each client needs a stream socket representing its connection to?, a listen socket on which to accept incoming connections from peers, and at least two additional stream sockets with which to initiate outgoing connections to the other peer's public and private TCP endpoints.

    Figure 7:?Sockets versus Ports for TCP Hole Punching

    Consider the common-case scenario in which the clients??and??are behind different NATs, as shown in Figure?5, and assume that the port numbers shown in the figure are now for TCP rather than UDP ports. The outgoing connection attempts??and??make to each other's private endpoints either fail or connect to the wrong host. As with UDP, it is important that TCP applications authenticate their peer-to-peer sessions, due of the likelihood of mistakenly connecting to a random host on the local network that happens to have the same private IP address as the desired host on a remote private network.

    The clients' outgoing connection attempts to each other's?public?endpoints, however, cause the respective NATs to open up new “holes” enabling direct TCP communication between??and?. If the NATs are well-behaved, then a new peer-to-peer TCP stream automatically forms between them. If?'s first SYN packet to??reaches?'s NAT before?'s first SYN packet to??reaches?'s NAT, for example, then?'s NAT may interpret?'s SYN as an unsolicited incoming connection attempt and drop it.?'s first SYN packet to??should subsequently get through, however, because?'s NAT sees this SYN as being part of the outbound session to??that?'s first SYN had already initiated.

    4.3 Behavior Observed by the Application

    What the client applications observe to happen with their sockets during TCP hole punching depends on the timing and the TCP implementations involved. Suppose that?'s first outbound SYN packet to?'s public endpoint is dropped by NAT?, but?'s first subsequent SYN packet to?'s public endpoint gets through to??before?'s TCP retransmits its SYN. Depending on the operating system involved, one of two things may happen:

    • 's TCP implementation notices that the session endpoints for the incoming SYN match those of an outbound session??was attempting to initiate.?'s TCP stack therefore associates this new session with the socket that the local application on??was using to?connect()?to?'s public endpoint. The application's asynchronous?connect()?call succeeds, and nothing happens with the application's listen socket.

      Since the received SYN packet did not include an ACK for?'s previous outbound SYN,?'s TCP replies to?'s public endpoint with a SYN-ACK packet, the SYN part being merely a replay of?'s original outbound SYN, using the same sequence number. Once?'s TCP receives?'s SYN-ACK, it responds with its own ACK for?'s SYN, and the TCP session enters the connected state on both ends.

    • Alternatively,?'s TCP implementation might instead notice that??has an active listen socket on that port waiting for incoming connection attempts. Since?'s SYN looks like an incoming connection attempt,?'s TCP creates a?new?stream socket with which to associate the new TCP session, and hands this new socket to the application via the application's next?accept()?call on its listen socket.?'s TCP then responds to??with a SYN-ACK as above, and TCP connection setup proceeds as usual for client/server-style connections.

      Since?'s prior outbound?connect()?attempt to??used a combination of source and destination endpoints that is now in use by another socket, namely the one just returned to the application via?accept(),?'s asynchronous?connect()?attempt must fail at some point, typically with an “address in use” error. The application nevertheless has the working peer-to-peer stream socket it needs to communicate with?, so it ignores this failure.

    The first behavior above appears to be usual for BSD-based operating systems, whereas the second behavior appears more common under Linux and Windows.

    4.4 Simultaneous TCP Open

    Suppose that the timing of the various connection attempts during the hole punching process works out so that the initial outgoing SYN packets from?both?clients traverse their respective local NATs, opening new outbound TCP sessions in each NAT, before reaching the remote NAT. In this “lucky” case, the NATs do not reject either of the initial SYN packets, and the SYNs cross on the wire between the two NATs. In this case, the clients observe an event known as a?simultaneous TCP open: each peer's TCP receives a “raw” SYN while waiting for a SYN-ACK. Each peer's TCP responds with a SYN-ACK, whose SYN part essentially “replays” the peer's previous outgoing SYN, and whose ACK part acknowledges the SYN received from the other peer.

    What the respective applications observe in this case again depends on the behavior of the TCP implementations involved, as described in the previous section. If?both?clients implement the second behavior above, it may be that?all?of the asynchronous?connect()?calls made by the application ultimately fail, but the application running on each client nevertheless receives a new, working peer-to-peer TCP stream socket via?accept()--as if this TCP stream had magically “created itself” on the wire and was merely passively accepted at the endpoints! As long as the application does not care whether it ultimately receives its peer-to-peer TCP sockets via?connect()?or?accept(), the process results in a working stream on any TCP implementation that properly implements the standard TCP state machine specified in RFC 793?[23].

    Each of the alternative network organization scenarios discussed in Section?3?for UDP works in exactly the same way for TCP. For example, TCP hole punching works in multi-level NAT scenarios such as the one in Figure?6?as long as the NATs involved are well-behaved.

    4.5 Sequential Hole Punching

    In a variant of the above TCP hole punching procedure implemented by the NatTrav library?[4], the clients attempt connections to each other sequentially rather than in parallel. For example: (1)??informs??via??of its desire to communicate,?without?simultaneously listening on its local port; (2)??makes a?connect()?attempt to?, which opens a hole in?'s NAT but then fails due to a timeout or RST from?'s NAT or a RST from??itself; (3)??closes its connection to??and does a?listen()?on its local port; (4)??in turn closes its connection with?, signaling??to attempt a?connect()?directly to?.

    This sequential procedure may be particularly useful on Windows hosts prior to XP Service Pack 2, which did not correctly implement simultaneous TCP open, or on sockets APIs that do not support the?SO_REUSEADDR?functionality. The sequential procedure is more timing-dependent, however, and may be slower in the common case and less robust in unusual situations. In step (2), for example,??must allow its “doomed-to-fail”?connect()?attempt enough time to ensure that at least one SYN packet traverses all NATs on its side of the network. Too little delay risks a lost SYN derailing the process, whereas too much delay increases the total time required for hole punching. The sequential hole punching procedure also effectively “consumes” both clients' connections to the server?, requiring the clients to open fresh connections to??for each new P2P connection to be forged. The parallel hole punching procedure, in contrast, typically completes as soon as both clients make their outgoing?connect()?attempts, and allows each client to retain and re-use a single connection to??indefinitely.

    5 Properties of P2P-Friendly NATs

    This section describes the key behavioral properties NATs must have in order for the hole punching techniques described above to work properly. Not all current NAT implementations satisfy these properties, but many do, and NATs are gradually becoming more “P2P-friendly” as NAT vendors recognize the demand for peer-to-peer protocols such as voice over IP and on-line gaming.

    This section is not meant to be a complete or definitive specification for how NATs “should” behave; we provide it merely for information about the most commonly observed behaviors that enable or break P2P hole punching. The IETF has started a new working group, BEHAVE, to define official “best current practices” for NAT behavior. The BEHAVE group's initial drafts include the considerations outlined in this section and others; NAT vendors should of course follow the IETF working group directly as official behavioral standards are formulated.

    5.1 Consistent Endpoint Translation

    The hole punching techniques described here only work automatically if the NAT consistently maps a given TCP or UDP source endpoint on the private network to a?single?corresponding public endpoint controlled by the NAT. A NAT that behaves in this way is referred to as a?cone NAT?in RFC 3489?[19] and elsewhere, because the NAT “focuses” all sessions originating from a single private endpoint through the same public endpoint on the NAT.

    Consider again the scenario in Figure?5, for example. When client??initially contacted the well-known server?, NAT??chose to use port 62000 at its own public IP address, 155.99.25.11, as a temporary public endpoint to representing?'s private endpoint 10.0.0.1:4321. When??later attempts to establish a peer-to-peer session with??by sending a message from the same local private endpoint to?'s public endpoint,??depends on NAT??preserving the identity of this private endpoint, and re-using the existing public endpoint of 155.99.25.11:62000, because that is the public endpoint for??to which??will be sending its corresponding messages.

    A NAT that is only designed to support client/server protocols will not necessarily preserve the identities of private endpoints in this way. Such a NAT is a?symmetric NAT?in RFC 3489 terminology. For example, after the NAT assigns the public endpoint 155.99.25.11:62000 to client?'s session with server?, the NAT might assign a different public endpoint, such as 155.99.25.11:62001, to the P2P session that??tries to initiate with?. In this case, the hole punching process fails to provide connectivity, because the subsequent incoming messages from??reach NAT??at the wrong port number.

    Many symmetric NATs allocate port numbers for successive sessions in a fairly predictable way. Exploiting this fact, variants of hole punching algorithms?[9,1] can be made to work “much of the time” even over symmetric NATs by first probing the NAT's behavior using a protocol such as STUN?[19], and using the resulting information to “predict” the public port number the NAT will assign to a new session. Such prediction techniques amount to chasing a moving target, however, and many things can go wrong along the way. The predicted port number might already be in use causing the NAT to jump to another port number, for example, or another client behind the same NAT might initiate an unrelated session at the wrong time so as to allocate the predicted port number. While port number prediction can be a useful trick for achieving maximum compatibility with badly-behaved existing NATs, it does not represent a robust long-term solution. Since symmetric NAT provides no greater security than a cone NAT with per-session traffic filtering, symmetric NAT is becoming less common as NAT vendors adapt their algorithms to support P2P protocols.

    5.2 Handling Unsolicited TCP Connections

    When a NAT receives a SYN packet on its public side for what appears to be an unsolicited incoming connection attempt, it is important that the NAT just silently drop the SYN packet. Some NATs instead actively reject such incoming connections by sending back a TCP RST packet or even an ICMP error report, which interferes with the TCP hole punching process. Such behavior is not necessarily fatal, as long as the applications re-try outgoing connection attempts as specified in step 4 of the process described in Section?4.2, but the resulting transient errors can make hole punching take longer.

    5.3 Leaving Payloads Alone

    A few existing NATs are known to scan “blindly” through packet payloads for 4-byte values that look like IP addresses, and translate them as they would the IP address in the packet header, without knowing anything about the application protocol in use. This bad behavior fortunately appears to be uncommon, and applications can easily protect themselves against it by obfuscating IP addresses they send in messages, for example by sending the bitwise complement of the desired IP address.

    5.4 Hairpin Translation

    Some multi-level NAT situations require hairpin translation support in order for either TCP or UDP hole punching to work, as described in Section?3.5. The scenario shown in Figure?6, for example, depends on NAT??providing hairpin translation. Support for hairpin translation is unfortunately rare in current NATs, but fortunately so are the network scenarios that require it. Multi-level NAT is becoming more common as IPv4 address space depletion continues, however, so support for hairpin translation is important in future NAT implementations.

    6 Evaluation of Existing NATs

    To evaluate the robustness of the TCP and UDP hole punching techniques described in this paper on a variety of existing NATs, we implemented and distributed a test program called NAT Check?[16], and solicited data from Internet users about their NATs.

    NAT Check's primary purpose is to test NATs for the two behavioral properties most crucial to reliable UDP and TCP hole punching: namely, consistent identity-preserving endpoint translation (Section?5.1), and silently dropping unsolicited incoming TCP SYNs instead of rejecting them with RSTs or ICMP errors (Section?5.2). In addition, NAT Check separately tests whether the NAT supports hairpin translation (Section?5.4), and whether the NAT filters unsolicited incoming traffic at all. This last property does not affect hole punching, but provides a useful indication the NAT's firewall policy.

    NAT Check makes no attempt to test every relevant facet of NAT behavior individually: a wide variety of subtle behavioral differences are known, some of which are difficult to test reliably?[12]. Instead, NAT Check merely attempts to answer the question, “how commonly can the proposed hole punching techniques be expected to work on deployed NATs, under typical network conditions?”

    6.1 Test Method

    NAT Check consists of a client program to be run on a machine behind the NAT to be tested, and three well-known servers at different global IP addresses. The client cooperates with the three servers to check the NAT behavior relevant to both TCP and UDP hole punching. The client program is small and relatively portable, currently running on Windows, Linux, BSD, and Mac OS X. The machines hosting the well-known servers all run FreeBSD.

    6.1.1 UDP Test

    To test the NAT's behavior for UDP, the client opens a socket and binds it to a local UDP port, then successively sends “ping”-like requests to servers 1 and 2, as shown in Figure?8. These servers each respond to the client's pings with a reply that includes the client's public UDP endpoint: the client's own IP address and UDP port number as observed by the server. If the two servers report the same public endpoint for the client, NAT Check assumes that the NAT properly preserves the identity of the client's private endpoint, satisfying the primary precondition for reliable UDP hole punching.

    Figure 8:?NAT Check Test Method for UDP

    When server 2 receives a UDP request from the client, besides replying directly to the client it also forwards the request to server 3, which in turn replies to the client from its own IP address. If the NAT's firewall properly filters “unsolicited” incoming traffic on a per-session basis, then the client never sees these replies from server 3, even though they are directed at the same public port as the replies from servers 1 and 2.

    To test the NAT for hairpin translation support, the client simply opens a second UDP socket at a different local port and uses it to send messages to the?public?endpoint representing the client's first UDP socket, as reported by server 2. If these messages reach the client's first private endpoint, then the NAT supports hairpin translation.

    6.1.2 TCP Test

    The TCP test follows a similar pattern as for UDP. The client uses a single local TCP port to initiate outbound sessions to servers 1 and 2, and checks whether the public endpoints reported by servers 1 and 2 are the same, the first precondition for reliable TCP hole punching.

    The NAT's response to unsolicited incoming connection attempts also impacts the speed and reliability of TCP hole punching, however, so NAT Check also tests this behavior. When server 2 receives the client's request, instead of immediately replying to the client, it forwards a request to server 3 and waits for server 3 to respond with a “go-ahead” signal. When server 3 receives this forwarded request, it attempts to initiate an inbound connection to the client's public TCP endpoint. Server 3 waits up to five seconds for this connection to succeed or fail, and if the connection attempt is still “in progress” after five seconds, server 3 responds to server 2 with the “go-ahead” signal and continues waiting for up to 20 seconds. Once the client finally receives server 2's reply (which server 2 delayed waiting for server 3's “go-ahead” signal), the client attempts an outbound connection to server 3, effectively causing a simultaneous TCP open with server 3.

    What happens during this test depends on the NAT's behavior as follows. If the NAT properly just drops server 3's “unsolicited” incoming SYN packets, then nothing happens on the client's listen socket during the five second period before server 2 replies to the client. When the client finally initiates its own connection to server 3, opening a hole through the NAT, the attempt succeeds immediately. If on the other hand the NAT does?not?drop server 3's unsolicited incoming SYNs but allows them through (which is fine for hole punching but not ideal for security), then the client receives an incoming TCP connection on its listen socket before receiving server 2's reply. Finally, if the NAT actively rejects server 3's unsolicited incoming SYNs by sending back TCP RST packets, then server 3 gives up and the client's subsequent attempt to connect to server 3 fails.

    To test hairpin translation for TCP, the client simply uses a secondary local TCP port to attempt a connection to the public endpoint corresponding to its primary TCP port, in the same way as for UDP.

    6.2 Test Results

    The NAT Check data we gathered consists of 380 reported data points covering a variety of NAT router hardware from 68 vendors, as well as the NAT functionality built into different versions of eight popular operating systems. Only 335 of the total data points include results for UDP hairpin translation, and only 286 data points include results for TCP, because we implemented these features in later versions of NAT Check after we had already started gathering results. The data is summarized by NAT vendor in Table?1; the table only individually lists vendors for which at least five data points were available. The variations in the test results for a given vendor can be accounted for by a variety of factors, such as different NAT devices or product lines sold by the same vendor, different software or firmware versions of the same NAT implementation, different configurations, and probably occasional NAT Check testing or reporting errors.

    ?

    Table 1:?User Reports of NAT Support for UDP and TCP Hole Punching
    ??UDPTCP
    ??Hole?Hole?
    ??PunchingHairpinPunchingHairpin
    NAT Hardware????????
    ?Linksys45/46(98%)5/42(12%)33/38(87%)3/38(8%)
    ?Netgear31/37(84%)3/35(9%)19/30(63%)0/30(0%)
    ?D-Link16/21(76%)11/21(52%)9/19(47%)2/19(11%)
    ?Draytek2/17(12%)3/12(25%)2/7(29%)0/7(0%)
    ?Belkin14/14(100%)1/14(7%)11/11(100%)0/11(0%)
    ?Cisco12/12(100%)3/9(33%)6/7(86%)2/7(29%)
    ?SMC12/12(100%)3/10(30%)8/9(89%)2/9(22%)
    ?ZyXEL7/9(78%)1/8(13%)0/7(0%)0/7(0%)
    ?3Com7/7(100%)1/7(14%)5/6(83%)0/6(0%)
    OS-based NAT????????
    ?Windows31/33(94%)11/32(34%)16/31(52%)28/31(90%)
    ?Linux26/32(81%)3/25(12%)16/24(67%)2/24(8%)
    ?FreeBSD7/9(78%)3/6(50%)2/3(67%)1/1(100%)
    All Vendors310/380(82%)80/335(24%)184/286(64%)37/286(13%)


    Out of the 380 reported data points for UDP, in 310 cases (82%) the NAT consistently translated the client's private endpoint, indicating basic compatibility with UDP hole punching. Support for hairpin translation is much less common, however: of the 335 data points that include UDP hairpin translation results, only 80 (24%) show hairpin translation support.

    Out of the 286 data points for TCP, 184 (64%) show compatibility with TCP hole punching: the NAT consistently translates the client's private TCP endpoint, and does not send back RST packets in response to unsolicited incoming connection attempts. Hairpin translation support is again much less common: only 37 (13%) of the reports showed hairpin support for TCP.

    Since these reports were generated by a “self-selecting” community of volunteers, they do not constitute a random sample and thus do not necessarily represent the true distribution of the NATs in common use. The results are nevertheless encouraging: it appears that the majority of commonly-deployed NATs already support UDP and TCP hole punching at least in single-level NAT scenarios.

    6.3 Testing Limitations

    There are a few limitations in NAT Check's current testing protocol that may cause misleading results in some cases. First, we only learned recently that a few NAT implementations blindly translate IP addresses they find in unknown application payloads, and the NAT Check protocol currently does not protect itself from this behavior by obfuscating the IP addresses it transmits.

    Second, NAT Check's current hairpin translation checking may yield unnecessarily pessimistic results because it does not use the full, two-way hole punching procedure for this test. NAT Check currently assumes that a NAT supporting hairpin translation does not filter “incoming” hairpin connections arriving from the private network in the way it would filter incoming connections arriving at the public side of the NAT, because such filtering is unnecessary for security. We later realized, however, that a NAT might simplistically treat?any?traffic directed at the NAT's public ports as “untrusted” regardless of its origin. We do not yet know which behavior is more common.

    Finally, NAT implementations exist that consistently translate the client's private endpoint as long as?only one?client behind the NAT is using a particular private port number, but switch to symmetric NAT or even worse behaviors if two or more clients with different IP addresses on the private network try to communicate through the NAT from the same private port number. NAT Check could only detect this behavior by requiring the user to run it on two or more client hosts behind the NAT at the same time. Doing so would make NAT Check much more difficult to use, however, and impossible for users who only have one usable machine behind the NAT. Nevertheless, we plan to implement this testing functionality as an option in a future version of NAT Check.

    6.4 Corroboration of Results

    Despite testing difficulties such as those above, our results are generally corroborated by those of a large ISP, who recently found that of the top three consumer NAT router vendors, representing 86% of the NATs observed on their network, all three vendors currently produce NATs compatible with UDP hole punching?[25]. Additional independent results recently obtained using the UDP-oriented STUN protocol?[12], and STUNT, a TCP-enabled extension?[8,9], also appear consistent with our results. These latter studies provide more information on each NAT by testing a wider variety of behaviors individually, instead of just testing for basic hole punching compatibility as NAT Check does. Since these more extensive tests require multiple cooperating clients behind the NAT and thus are more difficult to run, however, these results are so far available on a more limited variety of NATs.

    7 Related Work

    UDP hole punching was first explored and publicly documented by Dan Kegel?[13], and is by now well-known in peer-to-peer application communities. Important aspects of UDP hole punching have also been indirectly documented in the specifications of several experimental protocols, such as STUN?[19], ICE?[17], and Teredo?[11]. We know of no existing published work that thoroughly analyzes hole punching, however, or that points out the hairpin translation issue for multi-level NAT (Section?3.5).

    We also know of no prior work that develops TCP hole punching in the symmetric fashion described here. Even the existence of the crucial?SO_REUSEADDR/SO_REUSEPORT?options in the Berkeley sockets API appears to be little-known among P2P application developers. NatTrav?[4] implements a similar but asymmetric TCP hole punching procedure outlined earlier in Section?4.5. NUTSS?[9] and NATBLASTER?[1] implement more complex TCP hole punching tricks that can work around some of the bad NAT behaviors mentioned in Section?5, but they require the rendezvous server to spoof source IP addresses, and they also require the client applications to have access to “raw” sockets, usually available only at root or administrator privilege levels.

    Protocols such as SOCKS?[14], UPnP?[26], and MIDCOM?[22] allow applications to traverse a NAT through explicit cooperation with the NAT. These protocols are not widely or consistently supported by NAT vendors or applications, however, and do not appear to address the increasingly important multi-level NAT scenarios. Explicit control of a NAT further requires the application to locate the NAT and perhaps authenticate itself, which typically involves explicit user configuration. When hole punching works, in contrast, it works with no user intervention.

    Recent proposals such as HIP?[15] and FARA?[2] extend the Internet's basic architecture by decoupling a host's identity from its location?[20]. IPNL?[7], UIP?[5,6], and DOA?[27] propose schemes for routing across NATs in such an architecture. While such extensions are probably needed in the long term, hole punching enables applications to work over the existing network infrastructure immediately with no protocol stack upgrades, and leaves the notion of “host identity” for applications to define.

    8 Conclusion

    Hole punching is a general-purpose technique for establishing peer-to-peer connections in the presence of NAT. As long as the NATs involved meet certain behavioral requirements, hole punching works consistently and robustly for both TCP and UDP communication, and can be implemented by ordinary applications with no special privileges or specific network topology information. Hole punching fully preserves the transparency that is one of the most important hallmarks and attractions of NAT, and works even with multiple levels of NAT--though certain corner case situations require hairpin translation, a NAT feature not yet widely implemented.

    Acknowledgments

    The authors wish to thank Dave Andersen for his crucial support in gathering the results presented in Section?6. We also wish to thank Henrik Nordstrom, Christian Huitema, Justin Uberti, Mema Roussopoulos, and the anonymous USENIX reviewers for valuable feedback on early drafts of this paper. Finally, we wish to thank the many volunteers who took the time to run NAT Check on their systems and submit the results.

    Bibliography

    1
    Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian Perrig.?
    NATBLASTER: Establishing TCP connections between hosts behind NATs.?
    In?ACM SIGCOMM Asia Workshop, Beijing, China, April 2005.
    2
    David Clark, Robert Braden, Aaron Falk, and Venkata Pingali.?
    FARA: Reorganizing the addressing architecture.?
    In?ACM SIGCOMM FDNA Workshop, August 2003.
    3
    S.?Deering and R.?Hinden.?
    Internet protocol, version 6 (IPv6) specification, December 1998.?
    RFC 2460.
    4
    Jeffrey?L. Eppinger.?
    TCP connections for P2P apps: A software approach to solving the NAT problem.?
    Technical Report CMU-ISRI-05-104, Carnegie Mellon University, January 2005.
    5
    Bryan Ford.?
    Scalable Internet routing on topology-independent node identities.?
    Technical Report MIT-LCS-TR-926, MIT Laboratory for Computer Science, October 2003.
    6
    Bryan Ford.?
    Unmanaged internet protocol: Taming the edge network management crisis.?
    In?Second Workshop on Hot Topics in Networks, Cambridge, MA, November 2003.
    7
    Paul Francis and Ramakrishna Gummadi.?
    IPNL: A NAT-extended Internet architecture.?
    In?ACM SIGCOMM, August 2002.
    8
    Saikat Guha and Paul Francis.?
    Simple traversal of UDP through NATs and TCP too (STUNT).?
    http://nutss.gforge.cis.cornell.edu/.
    9
    Saikat Guha, Yutaka Takeday, and Paul Francis.?
    NUTSS: A SIP-based approach to UDP and TCP network connectivity.?
    In?SIGCOMM 2004 Workshops, August 2004.
    10
    M.?Holdrege and P.?Srisuresh.?
    Protocol complications with the IP network address translator, January 2001.?
    RFC 3027.
    11
    C.?Huitema.?
    Teredo: Tunneling IPv6 over UDP through NATs, March 2004.?
    Internet-Draft (Work in Progress).
    12
    C.?Jennings.?
    NAT classification results using STUN, October 2004.?
    Internet-Draft (Work in Progress).
    13
    Dan Kegel.?
    NAT and peer-to-peer networking, July 1999.?
    http://www.alumni.caltech.edu/~dank/peer-nat.html.
    14
    M.?Leech et?al.?
    SOCKS protocol, March 1996.?
    RFC 1928.
    15
    R.?Moskowitz and P.?Nikander.?
    Host identity protocol architecture, April 2003.?
    Internet-Draft (Work in Progress).
    16
    NAT check.?
    http://midcom-p2p.sourceforge.net/.
    17
    J.?Rosenberg.?
    Interactive connectivity establishment (ICE), October 2003.?
    Internet-Draft (Work in Progress).
    18
    J.?Rosenberg, C.?Huitema, and R.?Mahy.?
    Traversal using relay NAT (TURN), October 2003.?
    Internet-Draft (Work in Progress).
    19
    J.?Rosenberg, J.?Weinberger, C.?Huitema, and R.?Mahy.?
    STUN - simple traversal of user datagram protocol (UDP) through network address translators (NATs), March 2003.?
    RFC 3489.
    20
    J.?Saltzer.?
    On the naming and binding of network destinations.?
    In P.?Ravasio et al., editor,?Local Computer Networks, pages 311-317. North-Holland, Amsterdam, 1982.?
    RFC 1498.
    21
    P.?Srisuresh and M.?Holdrege.?
    IP network address translator (NAT) terminology and considerations, August 1999.?
    RFC 2663.
    22
    P.?Srisuresh, J.?Kuthan, J.?Rosenberg, A.?Molitor, and A.?Rayhan.?
    Middlebox communication architecture and framework, August 2002.?
    RFC 3303.
    23
    Transmission control protocol, September 1981.?
    RFC 793.
    24
    G.?Tsirtsis and P.?Srisuresh.?
    Network address translation - protocol translation (NAT-PT), February 2000.?
    RFC 2766.
    25
    Justin Uberti.?
    E-mail on IETF MIDCOM mailing list, February 2004.?
    Message-ID:?<402CEB11.1060906@aol.com>.
    26
    UPnP Forum.?
    Internet gateway device (IGD) standardized device control protocol, November 2001.?
    http://www.upnp.org/.
    27
    Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan, Robert Morris, and Scott Shenker.?
    Middleboxes no longer considered harmful.?
    In?USENIX Symposium on Operating Systems Design and Implementation, San Francisco, CA, December 2004.

    ?


    Bryan Ford 2005-02-17

    轉載于:https://www.cnblogs.com/Proteas/archive/2013/02/04/2891418.html

    總結

    以上是生活随笔為你收集整理的关于 UDP Hole Punching 的资料的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    天天拍夜夜添久久精品 | 亚洲 激情 小说 另类 欧美 | 亚洲精品久久久久中文第一幕 | 国产精品va在线观看无码 | 国内精品人妻无码久久久影院蜜桃 | 欧美野外疯狂做受xxxx高潮 | 三上悠亚人妻中文字幕在线 | 免费国产成人高清在线观看网站 | 国产成人午夜福利在线播放 | 乌克兰少妇性做爰 | 午夜肉伦伦影院 | 天天综合网天天综合色 | 国产在线精品一区二区高清不卡 | 亚洲欧美日韩国产精品一区二区 | 亚洲精品综合一区二区三区在线 | 久久人人爽人人爽人人片ⅴ | 国产偷自视频区视频 | 免费观看又污又黄的网站 | 精品乱子伦一区二区三区 | 亚洲欧美中文字幕5发布 | 精品国偷自产在线视频 | 人妻天天爽夜夜爽一区二区 | 国产va免费精品观看 | 国产精品成人av在线观看 | 欧美日韩精品 | 日日夜夜撸啊撸 | 野外少妇愉情中文字幕 | 成人一区二区免费视频 | 成年女人永久免费看片 | 夜夜影院未满十八勿进 | 在线播放免费人成毛片乱码 | 兔费看少妇性l交大片免费 | 亚洲欧美日韩成人高清在线一区 | 中文字幕av日韩精品一区二区 | 国产香蕉尹人综合在线观看 | 水蜜桃av无码 | 中文字幕乱码亚洲无线三区 | 中文字幕久久久久人妻 | 无码av中文字幕免费放 | 国产av无码专区亚洲a∨毛片 | 亚洲综合精品香蕉久久网 | 亚洲乱码中文字幕在线 | 露脸叫床粗话东北少妇 | 亚洲日本在线电影 | 国产无av码在线观看 | 99国产欧美久久久精品 | 久精品国产欧美亚洲色aⅴ大片 | 色综合久久久久综合一本到桃花网 | 夜先锋av资源网站 | a片免费视频在线观看 | 久久99精品国产.久久久久 | 亚洲精品久久久久久一区二区 | a在线观看免费网站大全 | 国产精品美女久久久久av爽李琼 | 亚洲а∨天堂久久精品2021 | 亚洲综合无码久久精品综合 | 成人欧美一区二区三区黑人免费 | 兔费看少妇性l交大片免费 | а天堂中文在线官网 | 久久精品人妻少妇一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 免费无码的av片在线观看 | 精品 日韩 国产 欧美 视频 | 四十如虎的丰满熟妇啪啪 | 真人与拘做受免费视频一 | 久久人人爽人人爽人人片ⅴ | 97人妻精品一区二区三区 | 亚洲伊人久久精品影院 | 色综合天天综合狠狠爱 | 亚洲精品一区三区三区在线观看 | 强奷人妻日本中文字幕 | 亚洲午夜福利在线观看 | 精品无码一区二区三区的天堂 | 奇米影视7777久久精品人人爽 | 欧美黑人乱大交 | 撕开奶罩揉吮奶头视频 | 国产免费观看黄av片 | aⅴ亚洲 日韩 色 图网站 播放 | av无码电影一区二区三区 | 日本熟妇浓毛 | 激情爆乳一区二区三区 | 国产三级久久久精品麻豆三级 | 精品欧洲av无码一区二区三区 | 日本www一道久久久免费榴莲 | 亚洲小说图区综合在线 | 色情久久久av熟女人妻网站 | 丝袜 中出 制服 人妻 美腿 | 亚洲人成无码网www | 乱人伦人妻中文字幕无码久久网 | 性欧美牲交xxxxx视频 | 成人无码精品1区2区3区免费看 | 亚洲区欧美区综合区自拍区 | 正在播放东北夫妻内射 | 日韩亚洲欧美精品综合 | 久久久久亚洲精品男人的天堂 | 欧美xxxx黑人又粗又长 | 大地资源网第二页免费观看 | 国产精品成人av在线观看 | 亚洲国精产品一二二线 | 中文字幕无码免费久久9一区9 | 伊人久久大香线蕉亚洲 | 欧美自拍另类欧美综合图片区 | 亚欧洲精品在线视频免费观看 | 日本在线高清不卡免费播放 | 国内揄拍国内精品少妇国语 | 国产精品福利视频导航 | 无码福利日韩神码福利片 | 亚洲最大成人网站 | 亚洲国产精品久久久天堂 | 国产美女极度色诱视频www | 99久久精品日本一区二区免费 | 国产成人综合在线女婷五月99播放 | 婷婷五月综合激情中文字幕 | 亚洲aⅴ无码成人网站国产app | 亚洲啪av永久无码精品放毛片 | 国产激情综合五月久久 | 国产偷抇久久精品a片69 | 国产激情无码一区二区app | 国产日产欧产精品精品app | 亚洲精品欧美二区三区中文字幕 | 亚无码乱人伦一区二区 | 99re在线播放 | 久久久久久av无码免费看大片 | 波多野结衣高清一区二区三区 | 国产69精品久久久久app下载 | 国产人妻人伦精品1国产丝袜 | 一二三四社区在线中文视频 | 在线看片无码永久免费视频 | 免费国产黄网站在线观看 | 国产黑色丝袜在线播放 | 日日躁夜夜躁狠狠躁 | 久久综合色之久久综合 | 大肉大捧一进一出好爽视频 | 久久久精品国产sm最大网站 | 久久99国产综合精品 | 性色av无码免费一区二区三区 | 婷婷丁香五月天综合东京热 | 18无码粉嫩小泬无套在线观看 | 精品一区二区不卡无码av | 日本一本二本三区免费 | 又粗又大又硬又长又爽 | 亚洲毛片av日韩av无码 | 国产激情无码一区二区 | www国产精品内射老师 | 露脸叫床粗话东北少妇 | 久久久久99精品成人片 | 国产免费久久久久久无码 | 国产97在线 | 亚洲 | 中文无码精品a∨在线观看不卡 | 日韩成人一区二区三区在线观看 | 给我免费的视频在线观看 | 樱花草在线社区www | 亚洲第一网站男人都懂 | 亚洲性无码av中文字幕 | 无码精品人妻一区二区三区av | 成人无码精品1区2区3区免费看 | 亚洲日本va中文字幕 | 亚洲热妇无码av在线播放 | 色婷婷欧美在线播放内射 | 人妻有码中文字幕在线 | 亚洲成a人片在线观看无码 | 日本又色又爽又黄的a片18禁 | 熟女体下毛毛黑森林 | 大乳丰满人妻中文字幕日本 | 国产成人无码专区 | 国产真实伦对白全集 | 成人片黄网站色大片免费观看 | 中文字幕中文有码在线 | 无人区乱码一区二区三区 | 亚洲精品国偷拍自产在线麻豆 | 国产特级毛片aaaaaa高潮流水 | 在线观看免费人成视频 | 亚洲大尺度无码无码专区 | 夜夜躁日日躁狠狠久久av | 色狠狠av一区二区三区 | 日韩欧美中文字幕在线三区 | 无码人妻丰满熟妇区五十路百度 | 久久综合给合久久狠狠狠97色 | 成人亚洲精品久久久久 | 帮老师解开蕾丝奶罩吸乳网站 | 久久国产精品二国产精品 | 国精品人妻无码一区二区三区蜜柚 | 牲欲强的熟妇农村老妇女视频 | 久久久久成人片免费观看蜜芽 | 亚洲一区二区三区偷拍女厕 | 国产精品国产自线拍免费软件 | 久久精品无码一区二区三区 | 欧美日韩综合一区二区三区 | 亚洲 日韩 欧美 成人 在线观看 | 又紧又大又爽精品一区二区 | 国内少妇偷人精品视频免费 | 亚洲精品一区二区三区在线 | 十八禁视频网站在线观看 | 欧美 丝袜 自拍 制服 另类 | 国产精品无码mv在线观看 | 国产亚洲欧美日韩亚洲中文色 | 欧美激情内射喷水高潮 | 麻豆人妻少妇精品无码专区 | 欧美黑人巨大xxxxx | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 日日麻批免费40分钟无码 | 欧美 日韩 人妻 高清 中文 | 国产精品对白交换视频 | 少妇愉情理伦片bd | 国产精品无码久久av | 无码国模国产在线观看 | 国产熟女一区二区三区四区五区 | 日本肉体xxxx裸交 | 精品国产国产综合精品 | 在线a亚洲视频播放在线观看 | 欧美日韩视频无码一区二区三 | 日本xxxx色视频在线观看免费 | 亚洲人亚洲人成电影网站色 | 国产精品国产三级国产专播 | 97无码免费人妻超级碰碰夜夜 | 欧美性色19p | 久久精品视频在线看15 | 中文字幕精品av一区二区五区 | 正在播放老肥熟妇露脸 | 国产av无码专区亚洲a∨毛片 | 无码精品人妻一区二区三区av | 久久久久人妻一区精品色欧美 | 成人免费视频在线观看 | 性开放的女人aaa片 | 无码人妻出轨黑人中文字幕 | 一本久道久久综合婷婷五月 | 又紧又大又爽精品一区二区 | 欧美性生交xxxxx久久久 | 日日躁夜夜躁狠狠躁 | 亚洲乱码中文字幕在线 | 欧美激情一区二区三区成人 | 中文无码伦av中文字幕 | 国产成人综合在线女婷五月99播放 | 人妻夜夜爽天天爽三区 | 精品无码国产自产拍在线观看蜜 | 中文毛片无遮挡高清免费 | 日韩成人一区二区三区在线观看 | 狠狠色欧美亚洲狠狠色www | 天天做天天爱天天爽综合网 | 日本在线高清不卡免费播放 | 国产人妻精品一区二区三区 | 久久久www成人免费毛片 | 欧美日韩在线亚洲综合国产人 | 无码成人精品区在线观看 | 熟妇女人妻丰满少妇中文字幕 | 国产一区二区三区四区五区加勒比 | 久久久精品人妻久久影视 | 亚洲精品综合一区二区三区在线 | 天天躁日日躁狠狠躁免费麻豆 | 欧美野外疯狂做受xxxx高潮 | 又紧又大又爽精品一区二区 | 荡女精品导航 | 影音先锋中文字幕无码 | 中文字幕精品av一区二区五区 | 东京无码熟妇人妻av在线网址 | 丁香啪啪综合成人亚洲 | 伊人久久婷婷五月综合97色 | 国产av无码专区亚洲awww | 精品国产av色一区二区深夜久久 | 蜜桃av抽搐高潮一区二区 | 色五月丁香五月综合五月 | 99精品国产综合久久久久五月天 | 成 人 网 站国产免费观看 | 中文字幕无码日韩欧毛 | 天天躁日日躁狠狠躁免费麻豆 | 狠狠色欧美亚洲狠狠色www | 国产无遮挡又黄又爽又色 | 精品国产av色一区二区深夜久久 | 国产美女极度色诱视频www | 成年美女黄网站色大免费全看 | 亚洲aⅴ无码成人网站国产app | 国产精品无码mv在线观看 | 精品乱子伦一区二区三区 | 国产香蕉尹人综合在线观看 | 亚洲国产精品一区二区美利坚 | 国产在热线精品视频 | 精品日本一区二区三区在线观看 | 无码免费一区二区三区 | 男人扒开女人内裤强吻桶进去 | 国产精品亚洲五月天高清 | 久久久婷婷五月亚洲97号色 | 精品成人av一区二区三区 | 中文字幕av伊人av无码av | 中国女人内谢69xxxxxa片 | 国产区女主播在线观看 | 欧美亚洲日韩国产人成在线播放 | ass日本丰满熟妇pics | 大地资源中文第3页 | 日本精品高清一区二区 | 88国产精品欧美一区二区三区 | 乱人伦人妻中文字幕无码 | 久久精品国产99久久6动漫 | 黑森林福利视频导航 | 色综合视频一区二区三区 | 67194成是人免费无码 | 大色综合色综合网站 | 亚洲精品国产第一综合99久久 | 波多野结衣av一区二区全免费观看 | 国产精品视频免费播放 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 亚洲精品成人福利网站 | 午夜肉伦伦影院 | 成 人 免费观看网站 | 国产在线无码精品电影网 | 久久国产精品偷任你爽任你 | 国产成人一区二区三区别 | 性啪啪chinese东北女人 | 中文字幕无码热在线视频 | 国产色视频一区二区三区 | 国产午夜手机精彩视频 | 欧美日韩色另类综合 | 成年美女黄网站色大免费全看 | 成人无码精品1区2区3区免费看 | 成人一区二区免费视频 | 成人欧美一区二区三区黑人免费 | 内射老妇bbwx0c0ck | 好爽又高潮了毛片免费下载 | 国产在线aaa片一区二区99 | 麻豆md0077饥渴少妇 | 国产精品久久久久影院嫩草 | 3d动漫精品啪啪一区二区中 | 欧美人与禽zoz0性伦交 | 欧洲vodafone精品性 | 欧美日韩色另类综合 | 亚洲精品国偷拍自产在线观看蜜桃 | 久久久久免费看成人影片 | 性色av无码免费一区二区三区 | 国产真实伦对白全集 | 鲁鲁鲁爽爽爽在线视频观看 | 久久精品人人做人人综合 | 熟妇人妻激情偷爽文 | 久久99热只有频精品8 | 国内精品人妻无码久久久影院 | 欧美第一黄网免费网站 | 精品日本一区二区三区在线观看 | 欧美日韩人成综合在线播放 | 亚洲人成网站色7799 | 蜜桃臀无码内射一区二区三区 | 少妇激情av一区二区 | 丁香啪啪综合成人亚洲 | 自拍偷自拍亚洲精品10p | 亚洲日本va午夜在线电影 | 亚洲中文字幕成人无码 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 日韩人妻无码一区二区三区久久99 | 亚洲va欧美va天堂v国产综合 | 99久久人妻精品免费二区 | 精品欧洲av无码一区二区三区 | 国产人妻精品一区二区三区 | 精品国精品国产自在久国产87 | 中文精品久久久久人妻不卡 | 无码福利日韩神码福利片 | 正在播放东北夫妻内射 | 国产精品-区区久久久狼 | 男女超爽视频免费播放 | 国产成人无码区免费内射一片色欲 | 久久久精品欧美一区二区免费 | 丰满人妻被黑人猛烈进入 | 日韩精品无码一本二本三本色 | 亚洲中文字幕va福利 | 美女毛片一区二区三区四区 | 一个人看的视频www在线 | 亚洲日韩av一区二区三区四区 | 亚洲の无码国产の无码影院 | 国产午夜手机精彩视频 | а√资源新版在线天堂 | 成 人 网 站国产免费观看 | 国产偷自视频区视频 | 麻豆国产人妻欲求不满谁演的 | 成年美女黄网站色大免费全看 | 亚洲一区二区三区 | 97久久精品无码一区二区 | 丝袜足控一区二区三区 | 动漫av网站免费观看 | 大肉大捧一进一出好爽视频 | 一个人看的www免费视频在线观看 | 亚洲欧洲无卡二区视頻 | 999久久久国产精品消防器材 | 国内精品久久久久久中文字幕 | 少妇久久久久久人妻无码 | 精品久久久久久亚洲精品 | 国产精品a成v人在线播放 | 成人无码影片精品久久久 | 日本一本二本三区免费 | 97久久国产亚洲精品超碰热 | 婷婷综合久久中文字幕蜜桃三电影 | 久久久久se色偷偷亚洲精品av | 亚洲一区二区三区含羞草 | 国产精品igao视频网 | 中文无码精品a∨在线观看不卡 | 天堂а√在线地址中文在线 | 四虎永久在线精品免费网址 | 色情久久久av熟女人妻网站 | 偷窥村妇洗澡毛毛多 | 无码国内精品人妻少妇 | 久在线观看福利视频 | 精品国产福利一区二区 | 国产小呦泬泬99精品 | 中文毛片无遮挡高清免费 | 免费无码av一区二区 | 性史性农村dvd毛片 | 牲欲强的熟妇农村老妇女视频 | 一本加勒比波多野结衣 | 无码成人精品区在线观看 | 九九久久精品国产免费看小说 | 老子影院午夜精品无码 | 久久综合给合久久狠狠狠97色 | 欧美猛少妇色xxxxx | 亚洲熟妇色xxxxx欧美老妇 | 人人爽人人澡人人高潮 | 青青久在线视频免费观看 | 精品无码一区二区三区的天堂 | 荫蒂被男人添的好舒服爽免费视频 | 又大又硬又黄的免费视频 | 欧美真人作爱免费视频 | 成人三级无码视频在线观看 | 国产精品亚洲а∨无码播放麻豆 | 亚洲色大成网站www | 色婷婷综合中文久久一本 | 日本肉体xxxx裸交 | 动漫av网站免费观看 | 国产一区二区三区四区五区加勒比 | 国产精品二区一区二区aⅴ污介绍 | 国产97在线 | 亚洲 | 日本饥渴人妻欲求不满 | 亚洲区欧美区综合区自拍区 | 精品久久久久久人妻无码中文字幕 | 理论片87福利理论电影 | 欧美三级不卡在线观看 | 又大又硬又爽免费视频 | 国产精品久久久av久久久 | 午夜性刺激在线视频免费 | 久久无码人妻影院 | 国产又粗又硬又大爽黄老大爷视 | 青青青爽视频在线观看 | 久久久久成人精品免费播放动漫 | 中文字幕无码免费久久99 | 国产绳艺sm调教室论坛 | 波多野结衣高清一区二区三区 | 国内综合精品午夜久久资源 | 丝袜 中出 制服 人妻 美腿 | 少妇激情av一区二区 | √8天堂资源地址中文在线 | 亚洲乱码日产精品bd | 欧美喷潮久久久xxxxx | 精品国产福利一区二区 | 欧美性猛交xxxx富婆 | 亚洲s色大片在线观看 | 女人被男人爽到呻吟的视频 | 久激情内射婷内射蜜桃人妖 | 乌克兰少妇xxxx做受 | 久久久久亚洲精品中文字幕 | 久久综合九色综合欧美狠狠 | 国产午夜视频在线观看 | 久久综合久久自在自线精品自 | 欧美熟妇另类久久久久久不卡 | 国产又爽又猛又粗的视频a片 | 一个人免费观看的www视频 | 亚洲精品午夜国产va久久成人 | 性欧美videos高清精品 | 全球成人中文在线 | 亚洲精品中文字幕久久久久 | 久久97精品久久久久久久不卡 | 亚洲性无码av中文字幕 | 久久久久久久女国产乱让韩 | 国产精品亚洲专区无码不卡 | 久久久久久九九精品久 | 国产熟妇另类久久久久 | 欧美亚洲国产一区二区三区 | 真人与拘做受免费视频一 | 少妇性俱乐部纵欲狂欢电影 | 国产精品久久久久久无码 | 欧美人与善在线com | 日韩少妇内射免费播放 | 人妻体内射精一区二区三四 | 色欲人妻aaaaaaa无码 | 正在播放东北夫妻内射 | 国产精品a成v人在线播放 | 欧美激情一区二区三区成人 | 精品久久综合1区2区3区激情 | 成人无码视频免费播放 | 国产口爆吞精在线视频 | 国产网红无码精品视频 | 麻豆精产国品 | 国产猛烈高潮尖叫视频免费 | 理论片87福利理论电影 | 色噜噜亚洲男人的天堂 | 久久精品人人做人人综合试看 | 中文毛片无遮挡高清免费 | 久久久久se色偷偷亚洲精品av | 欧美三级不卡在线观看 | 久久久久久国产精品无码下载 | 久久精品99久久香蕉国产色戒 | 亚洲欧美日韩综合久久久 | 亚洲成av人在线观看网址 | 一本久道久久综合狠狠爱 | 1000部啪啪未满十八勿入下载 | 成年美女黄网站色大免费视频 | 久久久久久国产精品无码下载 | 丁香啪啪综合成人亚洲 | 中文久久乱码一区二区 | 日韩av激情在线观看 | 国产精品对白交换视频 | 久久亚洲中文字幕精品一区 | 国产成人综合色在线观看网站 | 亚洲成a人片在线观看无码 | 国产高清av在线播放 | 精品国产成人一区二区三区 | 久久综合激激的五月天 | 噜噜噜亚洲色成人网站 | 天天摸天天透天天添 | 亚洲精品一区国产 | 学生妹亚洲一区二区 | 亚洲国产精品一区二区第一页 | 亚洲成av人片在线观看无码不卡 | 国产高清不卡无码视频 | 又大又硬又爽免费视频 | 任你躁国产自任一区二区三区 | 人妻体内射精一区二区三四 | 无码毛片视频一区二区本码 | 麻豆国产人妻欲求不满谁演的 | 国产激情一区二区三区 | 久久久精品欧美一区二区免费 | av香港经典三级级 在线 | 亚洲精品午夜国产va久久成人 | 少妇人妻偷人精品无码视频 | 久久亚洲日韩精品一区二区三区 | 国产精品久久福利网站 | 牲欲强的熟妇农村老妇女 | 人人妻在人人 | 国产av无码专区亚洲awww | 性生交大片免费看女人按摩摩 | 少妇性荡欲午夜性开放视频剧场 | 野外少妇愉情中文字幕 | 国产色视频一区二区三区 | 欧美老妇交乱视频在线观看 | 人妻无码αv中文字幕久久琪琪布 | 在线观看国产一区二区三区 | 成人一区二区免费视频 | 日韩 欧美 动漫 国产 制服 | 丰满人妻精品国产99aⅴ | 国产av剧情md精品麻豆 | 亚洲日本va午夜在线电影 | 丰满肥臀大屁股熟妇激情视频 | 真人与拘做受免费视频 | 久久久精品456亚洲影院 | 澳门永久av免费网站 | 成人aaa片一区国产精品 | 国产手机在线αⅴ片无码观看 | 精品一区二区三区无码免费视频 | 国产熟女一区二区三区四区五区 | 国产亚洲精品久久久久久久久动漫 | 久久午夜无码鲁丝片 | 人妻体内射精一区二区三四 | 久久久久av无码免费网 | 中文字幕av伊人av无码av | 亚洲色欲色欲欲www在线 | 婷婷五月综合激情中文字幕 | 西西人体www44rt大胆高清 | 日韩欧美成人免费观看 | 娇妻被黑人粗大高潮白浆 | 奇米影视888欧美在线观看 | 成人亚洲精品久久久久 | 人妻无码αv中文字幕久久琪琪布 | 亚洲人成无码网www | 亚洲综合无码久久精品综合 | 亚洲成av人综合在线观看 | 国产在线精品一区二区高清不卡 | 国精产品一区二区三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 国産精品久久久久久久 | 成人精品视频一区二区三区尤物 | 午夜无码人妻av大片色欲 | 永久免费精品精品永久-夜色 | 亚洲国产精品一区二区第一页 | 久久天天躁狠狠躁夜夜免费观看 | 亚洲欧美日韩成人高清在线一区 | 精品国产乱码久久久久乱码 | 成人动漫在线观看 | 亚洲综合无码一区二区三区 | 天堂在线观看www | 美女极度色诱视频国产 | 亚洲色欲色欲天天天www | 日本熟妇大屁股人妻 | 午夜精品久久久久久久久 | 精品久久久中文字幕人妻 | 一本久道久久综合狠狠爱 | 西西人体www44rt大胆高清 | 精品久久久无码人妻字幂 | 日本乱偷人妻中文字幕 | 一本一道久久综合久久 | 欧美日本精品一区二区三区 | 亚洲国产高清在线观看视频 | 亚洲一区二区三区在线观看网站 | 亚洲成av人在线观看网址 | 丰满人妻被黑人猛烈进入 | 中文字幕久久久久人妻 | 好男人www社区 | 人人妻人人澡人人爽人人精品浪潮 | 亚洲色无码一区二区三区 | 色综合天天综合狠狠爱 | 国产精品久久久久影院嫩草 | 人人妻人人澡人人爽欧美精品 | 国产精品99爱免费视频 | 亚洲色成人中文字幕网站 | 狂野欧美激情性xxxx | 欧美成人午夜精品久久久 | 国产真实伦对白全集 | 国产av无码专区亚洲a∨毛片 | 国产精品视频免费播放 | 亚洲成av人片天堂网无码】 | 无码任你躁久久久久久久 | 男女下面进入的视频免费午夜 | 九九热爱视频精品 | 老子影院午夜精品无码 | 午夜不卡av免费 一本久久a久久精品vr综合 | 一个人免费观看的www视频 | www成人国产高清内射 | 久久人人爽人人爽人人片ⅴ | 亚洲毛片av日韩av无码 | 老熟妇乱子伦牲交视频 | 动漫av一区二区在线观看 | 国产激情一区二区三区 | 国精产品一品二品国精品69xx | 国产在线一区二区三区四区五区 | 女人被爽到呻吟gif动态图视看 | 国产明星裸体无码xxxx视频 | 国产精华av午夜在线观看 | 亚洲精品欧美二区三区中文字幕 | 一区二区三区乱码在线 | 欧洲 | 无码人妻丰满熟妇区五十路百度 | 欧美日韩色另类综合 | 亚洲精品一区二区三区四区五区 | 一本色道久久综合亚洲精品不卡 | 欧美精品国产综合久久 | 欧美老熟妇乱xxxxx | 久久久久亚洲精品男人的天堂 | 国产又爽又猛又粗的视频a片 | 一本久久a久久精品vr综合 | 丰满少妇高潮惨叫视频 | 少妇性荡欲午夜性开放视频剧场 | 九月婷婷人人澡人人添人人爽 | 亚洲成av人片在线观看无码不卡 | 亚洲午夜久久久影院 | 亚洲码国产精品高潮在线 | 久久久久亚洲精品中文字幕 | 国产两女互慰高潮视频在线观看 | 精品国产一区av天美传媒 | 久久久中文久久久无码 | 秋霞成人午夜鲁丝一区二区三区 | 精品久久久久久人妻无码中文字幕 | 内射欧美老妇wbb | 亚洲国产精品一区二区美利坚 | 国产精品成人av在线观看 | 亚洲中文字幕乱码av波多ji | 无码人中文字幕 | 亚洲精品综合一区二区三区在线 | 熟妇人妻无码xxx视频 | 亚洲一区二区三区香蕉 | 国精产品一品二品国精品69xx | 麻花豆传媒剧国产免费mv在线 | www国产亚洲精品久久久日本 | 老司机亚洲精品影院无码 | 日韩视频 中文字幕 视频一区 | 国精品人妻无码一区二区三区蜜柚 | 精品久久久无码中文字幕 | 国产精品亚洲lv粉色 | 十八禁视频网站在线观看 | 国产精品亚洲а∨无码播放麻豆 | 兔费看少妇性l交大片免费 | 无码国内精品人妻少妇 | 嫩b人妻精品一区二区三区 | 国产激情无码一区二区 | 性欧美大战久久久久久久 | 亚洲精品久久久久中文第一幕 | 亚洲 激情 小说 另类 欧美 | 国产美女极度色诱视频www | 久久天天躁狠狠躁夜夜免费观看 | 亚洲区欧美区综合区自拍区 | 丰满少妇人妻久久久久久 | 女人被男人爽到呻吟的视频 | 波多野结衣一区二区三区av免费 | 精品乱子伦一区二区三区 | 又大又黄又粗又爽的免费视频 | 色欲久久久天天天综合网精品 | 国产国产精品人在线视 | 亚洲国产欧美国产综合一区 | 扒开双腿疯狂进出爽爽爽视频 | 国产又粗又硬又大爽黄老大爷视 | 天下第一社区视频www日本 | 国产精品国产自线拍免费软件 | 亚洲国产一区二区三区在线观看 | 国产真人无遮挡作爱免费视频 | 国产成人一区二区三区在线观看 | 久久久精品欧美一区二区免费 | 久久亚洲a片com人成 | 无码国产色欲xxxxx视频 | 香蕉久久久久久av成人 | 亚洲 欧美 激情 小说 另类 | 亚洲精品无码人妻无码 | 99久久人妻精品免费二区 | 老熟妇乱子伦牲交视频 | 女人和拘做爰正片视频 | 未满小14洗澡无码视频网站 | 色情久久久av熟女人妻网站 | а天堂中文在线官网 | 中文字幕无码热在线视频 | 天天综合网天天综合色 | 国产成人精品必看 | v一区无码内射国产 | 丰满人妻精品国产99aⅴ | 国产在线aaa片一区二区99 | 亚洲va中文字幕无码久久不卡 | 国产偷国产偷精品高清尤物 | 少妇性俱乐部纵欲狂欢电影 | 无套内谢的新婚少妇国语播放 | 亚洲精品欧美二区三区中文字幕 | 久久久久久九九精品久 | 成熟人妻av无码专区 | 亚洲精品欧美二区三区中文字幕 | 色一情一乱一伦一视频免费看 | 亚洲男女内射在线播放 | 精品无码国产自产拍在线观看蜜 | 小泽玛莉亚一区二区视频在线 | 日日碰狠狠丁香久燥 | 扒开双腿吃奶呻吟做受视频 | 99久久无码一区人妻 | 成人亚洲精品久久久久软件 | 香蕉久久久久久av成人 | 性欧美牲交在线视频 | 老熟妇仑乱视频一区二区 | 国产特级毛片aaaaaaa高清 | 初尝人妻少妇中文字幕 | 麻豆精品国产精华精华液好用吗 | 3d动漫精品啪啪一区二区中 | 无码乱肉视频免费大全合集 | 性欧美熟妇videofreesex | 76少妇精品导航 | 免费无码的av片在线观看 | 欧美日韩色另类综合 | 精品无码成人片一区二区98 | 久久久成人毛片无码 | 99视频精品全部免费免费观看 | 久久久久亚洲精品中文字幕 | 亚洲精品久久久久久一区二区 | 少妇性荡欲午夜性开放视频剧场 | 无码av中文字幕免费放 | 人人妻人人澡人人爽精品欧美 | 亚洲日韩一区二区三区 | 无码毛片视频一区二区本码 | 欧美成人免费全部网站 | 欧美乱妇无乱码大黄a片 | 人妻夜夜爽天天爽三区 | 天堂久久天堂av色综合 | 亚洲一区二区三区四区 | 久久精品无码一区二区三区 | 日日天日日夜日日摸 | 国产热a欧美热a在线视频 | 国产成人午夜福利在线播放 | 日本一区二区三区免费高清 | 天天摸天天碰天天添 | 宝宝好涨水快流出来免费视频 | 在线精品亚洲一区二区 | 国产精品无码mv在线观看 | aⅴ在线视频男人的天堂 | 日韩精品a片一区二区三区妖精 | 日日摸日日碰夜夜爽av | 久久久久亚洲精品中文字幕 | 十八禁视频网站在线观看 | 亚洲高清偷拍一区二区三区 | 无码人妻丰满熟妇区毛片18 | 大地资源中文第3页 | 欧美日韩精品 | 亚洲精品国产a久久久久久 | 国产精品久久久久9999小说 | 中文字幕人妻无码一夲道 | 永久免费观看美女裸体的网站 | 中文字幕乱码人妻无码久久 | 国产欧美亚洲精品a | 任你躁在线精品免费 | 国产精品福利视频导航 | 99久久无码一区人妻 | 2019午夜福利不卡片在线 | 色欲人妻aaaaaaa无码 | 日本乱人伦片中文三区 | 鲁大师影院在线观看 | 精品国产成人一区二区三区 | 99久久人妻精品免费二区 | 国产精品久久福利网站 | 99精品国产综合久久久久五月天 | 高清无码午夜福利视频 | 亚洲国产精品无码久久久久高潮 | 久久久亚洲欧洲日产国码αv | 午夜精品一区二区三区在线观看 | 中国女人内谢69xxxx | 国产另类ts人妖一区二区 | 国产精品久久久久影院嫩草 | 日本大香伊一区二区三区 | 装睡被陌生人摸出水好爽 | 美女极度色诱视频国产 | 成人免费视频在线观看 | 偷窥村妇洗澡毛毛多 | 国产美女极度色诱视频www | 红桃av一区二区三区在线无码av | 无码精品人妻一区二区三区av | 国产欧美精品一区二区三区 | 国产明星裸体无码xxxx视频 | 一本大道久久东京热无码av | 免费无码肉片在线观看 | 国产亲子乱弄免费视频 | 高潮毛片无遮挡高清免费 | 亚洲中文字幕乱码av波多ji | 国产欧美精品一区二区三区 | 国产激情无码一区二区 | 久久精品国产99精品亚洲 | 亚洲欧美综合区丁香五月小说 | 国内精品一区二区三区不卡 | 成在人线av无码免观看麻豆 | 极品尤物被啪到呻吟喷水 | 免费人成在线观看网站 | 国产综合色产在线精品 | | 樱花草在线社区www | 国产无av码在线观看 | 97精品国产97久久久久久免费 | 亚洲精品国产品国语在线观看 | 亚洲人成网站免费播放 | 国产美女精品一区二区三区 | 大胆欧美熟妇xx | 亚洲欧美色中文字幕在线 | 漂亮人妻洗澡被公强 日日躁 | 97夜夜澡人人双人人人喊 | 岛国片人妻三上悠亚 | 波多野结衣aⅴ在线 | 亚洲中文字幕无码一久久区 | 久久久久se色偷偷亚洲精品av | 亚洲国产精品一区二区第一页 | 色老头在线一区二区三区 | 亚洲国产欧美国产综合一区 | 性色欲网站人妻丰满中文久久不卡 | 久久精品一区二区三区四区 | 西西人体www44rt大胆高清 | 福利一区二区三区视频在线观看 | 亚洲人成网站色7799 | 纯爱无遮挡h肉动漫在线播放 | 女人和拘做爰正片视频 | 爱做久久久久久 | 麻豆md0077饥渴少妇 | 中文字幕av无码一区二区三区电影 | 国产偷抇久久精品a片69 | 成人欧美一区二区三区黑人免费 | 97久久超碰中文字幕 | 夜夜躁日日躁狠狠久久av | 国产一区二区三区精品视频 | 亚洲熟女一区二区三区 | 77777熟女视频在线观看 а天堂中文在线官网 | 国产精品亚洲五月天高清 | 国产国产精品人在线视 | 国产精品人妻一区二区三区四 | 久久久亚洲欧洲日产国码αv | 丝袜足控一区二区三区 | 久久午夜无码鲁丝片 | 永久黄网站色视频免费直播 | 免费男性肉肉影院 | 又色又爽又黄的美女裸体网站 | 免费人成网站视频在线观看 | 亚洲爆乳精品无码一区二区三区 | 一二三四社区在线中文视频 | 亚洲中文字幕乱码av波多ji | 无码人妻出轨黑人中文字幕 | 国产免费久久精品国产传媒 | 女高中生第一次破苞av | 亚洲阿v天堂在线 | 国产又爽又猛又粗的视频a片 | 狂野欧美性猛交免费视频 | 97久久国产亚洲精品超碰热 | 性做久久久久久久免费看 | 国产办公室秘书无码精品99 | 天堂а√在线中文在线 | 亚洲一区二区三区无码久久 | 一区二区三区乱码在线 | 欧洲 | 欧美日韩一区二区综合 | 婷婷五月综合激情中文字幕 | 内射白嫩少妇超碰 | 久久久无码中文字幕久... | 亚洲综合色区中文字幕 | 欧美亚洲日韩国产人成在线播放 | 午夜精品一区二区三区的区别 | 在线视频网站www色 | 午夜丰满少妇性开放视频 | 黑人巨大精品欧美黑寡妇 | 亚洲熟妇色xxxxx欧美老妇y | 久青草影院在线观看国产 | 又湿又紧又大又爽a视频国产 | 亚洲精品久久久久中文第一幕 | 妺妺窝人体色www婷婷 | 免费中文字幕日韩欧美 | 成人精品视频一区二区三区尤物 | 日本成熟视频免费视频 | 精品无码一区二区三区爱欲 | 国产亚洲视频中文字幕97精品 | 亚洲综合在线一区二区三区 | 国内精品人妻无码久久久影院蜜桃 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 精品日本一区二区三区在线观看 | 麻豆av传媒蜜桃天美传媒 | 正在播放老肥熟妇露脸 | 国色天香社区在线视频 | 国产真实夫妇视频 | 亚洲日韩精品欧美一区二区 | 亚洲娇小与黑人巨大交 | 亚洲成av人影院在线观看 | 亚洲精品久久久久久一区二区 | 欧美野外疯狂做受xxxx高潮 | 亚洲国产精品无码一区二区三区 | 日韩无套无码精品 | 精品亚洲成av人在线观看 | 骚片av蜜桃精品一区 | 美女毛片一区二区三区四区 | 国产高清av在线播放 | 国产成人久久精品流白浆 | 国产成人无码av片在线观看不卡 | 天天拍夜夜添久久精品大 | 国产精品久久久久无码av色戒 | 久久成人a毛片免费观看网站 | 色 综合 欧美 亚洲 国产 | 东京一本一道一二三区 | 一本色道婷婷久久欧美 | 在线а√天堂中文官网 | 超碰97人人做人人爱少妇 | 国产艳妇av在线观看果冻传媒 | 18精品久久久无码午夜福利 | 国产成人无码a区在线观看视频app | 国产精品久久国产三级国 | 精品国产麻豆免费人成网站 | 国产无套粉嫩白浆在线 | 国产精品嫩草久久久久 | 国产精品多人p群无码 | 久精品国产欧美亚洲色aⅴ大片 | av无码久久久久不卡免费网站 | 国精产品一区二区三区 | 久久久久久久久蜜桃 | 日日摸日日碰夜夜爽av | 亚洲精品国偷拍自产在线麻豆 | 午夜无码人妻av大片色欲 | 纯爱无遮挡h肉动漫在线播放 | 色窝窝无码一区二区三区色欲 | 国产片av国语在线观看 | 在教室伦流澡到高潮hnp视频 | 丰满人妻被黑人猛烈进入 | 性开放的女人aaa片 | 曰韩少妇内射免费播放 | 国产精品.xx视频.xxtv | 18无码粉嫩小泬无套在线观看 | 欧美野外疯狂做受xxxx高潮 | 一本久道久久综合婷婷五月 | 少妇高潮一区二区三区99 | 日韩av无码中文无码电影 | 欧美日韩在线亚洲综合国产人 | 中文字幕乱妇无码av在线 | 国产av人人夜夜澡人人爽麻豆 | 久久久精品人妻久久影视 | 天天av天天av天天透 | 国内精品久久毛片一区二区 | 性欧美videos高清精品 | 亚洲自偷自偷在线制服 | 十八禁真人啪啪免费网站 | 亚洲国产精品无码久久久久高潮 | 1000部夫妻午夜免费 | 亚洲国产欧美国产综合一区 | 欧美老妇与禽交 | 国产精品人人妻人人爽 | 国内丰满熟女出轨videos | 国产成人综合色在线观看网站 | 少妇人妻偷人精品无码视频 | 亚洲第一网站男人都懂 | 亚洲精品一区二区三区在线观看 | 欧美日韩久久久精品a片 | 亚洲色在线无码国产精品不卡 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 老司机亚洲精品影院无码 | 国产偷国产偷精品高清尤物 | 人人爽人人澡人人人妻 | 天堂а√在线地址中文在线 | 好男人社区资源 | 99久久精品国产一区二区蜜芽 | 国产精品对白交换视频 | 免费观看黄网站 | 女人高潮内射99精品 | 亚洲精品一区二区三区在线观看 | 成在人线av无码免观看麻豆 | 亚洲经典千人经典日产 | 国产精品美女久久久网av | 一本久久伊人热热精品中文字幕 | аⅴ资源天堂资源库在线 | 精品厕所偷拍各类美女tp嘘嘘 | 欧美日韩亚洲国产精品 | 亚洲欧美国产精品久久 | 东京一本一道一二三区 | 精品无码成人片一区二区98 | 免费无码一区二区三区蜜桃大 | 久久精品丝袜高跟鞋 | 亚洲天堂2017无码中文 | 久久综合激激的五月天 | 久久婷婷五月综合色国产香蕉 | 国产人妻人伦精品1国产丝袜 | www一区二区www免费 | 女高中生第一次破苞av | 乱中年女人伦av三区 | 97夜夜澡人人爽人人喊中国片 | 亚洲爆乳精品无码一区二区三区 | 日韩欧美成人免费观看 | 国产在线aaa片一区二区99 | 久久久亚洲欧洲日产国码αv | 日韩欧美群交p片內射中文 | 日韩精品a片一区二区三区妖精 | 中文字幕 亚洲精品 第1页 | 亚洲一区二区三区偷拍女厕 | 精品 日韩 国产 欧美 视频 | 精品国精品国产自在久国产87 | 亚洲午夜无码久久 | 国产精品久久国产三级国 | 97夜夜澡人人双人人人喊 | 免费无码肉片在线观看 | 亚拍精品一区二区三区探花 | 成熟人妻av无码专区 | 日韩av无码一区二区三区 | 99麻豆久久久国产精品免费 | 精品乱码久久久久久久 | 免费播放一区二区三区 | 免费无码肉片在线观看 | 国产精品资源一区二区 | 国产亚洲精品久久久久久大师 | av人摸人人人澡人人超碰下载 | 又大又黄又粗又爽的免费视频 | 丰满护士巨好爽好大乳 | 玩弄中年熟妇正在播放 | 亚洲欧美国产精品专区久久 | 色狠狠av一区二区三区 | 丰满少妇人妻久久久久久 | 亚洲人亚洲人成电影网站色 | 熟妇人妻无码xxx视频 | 99久久亚洲精品无码毛片 | 欧美野外疯狂做受xxxx高潮 | 亚洲综合色区中文字幕 | 欧美精品一区二区精品久久 | 天天躁日日躁狠狠躁免费麻豆 | 亚洲色www成人永久网址 | 人人妻人人澡人人爽人人精品浪潮 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 少妇性l交大片 | 中文字幕色婷婷在线视频 | 欧美人与物videos另类 | 国产精品-区区久久久狼 | 成人综合网亚洲伊人 | 成 人 免费观看网站 | 亚洲人成人无码网www国产 | 少妇性l交大片 | 99精品国产综合久久久久五月天 | 狠狠色丁香久久婷婷综合五月 | 狠狠色欧美亚洲狠狠色www | 亚洲日韩av片在线观看 | 大地资源网第二页免费观看 | 欧美一区二区三区 | 婷婷色婷婷开心五月四房播播 | 图片小说视频一区二区 | 国产精品久久久久久亚洲影视内衣 | 国产一区二区三区四区五区加勒比 | 色婷婷久久一区二区三区麻豆 | 亚洲区欧美区综合区自拍区 | 亚洲大尺度无码无码专区 | 久久精品女人天堂av免费观看 | 大地资源中文第3页 | 男女性色大片免费网站 | 午夜无码区在线观看 | 日韩精品无码一本二本三本色 | 国产精品办公室沙发 | 国产亚洲人成在线播放 | 中文字幕无码av激情不卡 | 国产香蕉尹人综合在线观看 | 日本一卡二卡不卡视频查询 | 国产精品鲁鲁鲁 | 国产无套内射久久久国产 | 未满小14洗澡无码视频网站 | 99精品视频在线观看免费 | 无码国模国产在线观看 | 丰满岳乱妇在线观看中字无码 | 国产日产欧产精品精品app | 亚洲精品综合一区二区三区在线 | 久久97精品久久久久久久不卡 | 精品欧洲av无码一区二区三区 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 窝窝午夜理论片影院 | 亚洲国产av美女网站 | 国产成人人人97超碰超爽8 | 婷婷丁香五月天综合东京热 | 亚洲乱码日产精品bd | 国产精品福利视频导航 | 亚洲精品一区二区三区大桥未久 | 国产亚洲日韩欧美另类第八页 | 最近免费中文字幕中文高清百度 | 亚洲小说图区综合在线 | 久久aⅴ免费观看 | 国产精品第一国产精品 | 性做久久久久久久久 | 黑森林福利视频导航 | 国产亚洲美女精品久久久2020 | 国产精品毛片一区二区 | 欧美老人巨大xxxx做受 | 国内揄拍国内精品少妇国语 | 乱中年女人伦av三区 | 欧美怡红院免费全部视频 | 四虎影视成人永久免费观看视频 | 久久精品国产99精品亚洲 | а天堂中文在线官网 | 亚洲 a v无 码免 费 成 人 a v | 亚洲熟妇自偷自拍另类 | 成人女人看片免费视频放人 | 草草网站影院白丝内射 | 四虎国产精品免费久久 | 中文字幕人成乱码熟女app | 亚洲一区二区三区国产精华液 | 99精品国产综合久久久久五月天 | 国产一区二区三区日韩精品 | 国产精品香蕉在线观看 | 又黄又爽又色的视频 | 玩弄人妻少妇500系列视频 | 亚洲精品欧美二区三区中文字幕 | 中文字幕日产无线码一区 | 欧美猛少妇色xxxxx | 乌克兰少妇性做爰 | 白嫩日本少妇做爰 | 日本大香伊一区二区三区 | 天堂久久天堂av色综合 | 免费人成网站视频在线观看 | 少妇性l交大片欧洲热妇乱xxx | 波多野结衣 黑人 | 色窝窝无码一区二区三区色欲 | 久久精品人人做人人综合试看 | 中文字幕+乱码+中文字幕一区 | 久久99精品国产.久久久久 | 人妻与老人中文字幕 | 欧美黑人巨大xxxxx | 国产va免费精品观看 | 久久精品国产大片免费观看 | 国产特级毛片aaaaaa高潮流水 | 99久久婷婷国产综合精品青草免费 | 亚洲欧洲日本综合aⅴ在线 | 日本又色又爽又黄的a片18禁 | 久久久精品国产sm最大网站 | a国产一区二区免费入口 | 女人和拘做爰正片视频 | 97色伦图片97综合影院 | 久久综合网欧美色妞网 | 亚洲成a人片在线观看日本 | 18禁黄网站男男禁片免费观看 | 亚洲精品久久久久avwww潮水 | 中国大陆精品视频xxxx | 日本一本二本三区免费 | 亚洲国产精品久久久天堂 | 好男人社区资源 | 色五月丁香五月综合五月 | 曰本女人与公拘交酡免费视频 | 国产精品久久久久久亚洲影视内衣 | 黑人大群体交免费视频 | 日本精品高清一区二区 | 久久99精品国产麻豆蜜芽 | 久久久国产精品无码免费专区 | 老司机亚洲精品影院 | 免费男性肉肉影院 | 婷婷综合久久中文字幕蜜桃三电影 | 国产凸凹视频一区二区 | 亚洲日本va午夜在线电影 | 国产精品久免费的黄网站 | 国内精品人妻无码久久久影院蜜桃 | a国产一区二区免费入口 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 久久国产精品_国产精品 | 丝袜人妻一区二区三区 | 国产欧美精品一区二区三区 | 一本久道久久综合婷婷五月 | 国产成人人人97超碰超爽8 | 久久99精品久久久久久 | 大屁股大乳丰满人妻 | 特大黑人娇小亚洲女 | 无码帝国www无码专区色综合 | 亚洲熟妇色xxxxx欧美老妇 | 色噜噜亚洲男人的天堂 | 无码国产激情在线观看 | 无码人妻丰满熟妇区毛片18 | 国产免费观看黄av片 | 日日噜噜噜噜夜夜爽亚洲精品 | 狠狠噜狠狠狠狠丁香五月 | 大地资源网第二页免费观看 | 亚洲 欧美 激情 小说 另类 | 国产精品a成v人在线播放 | 1000部啪啪未满十八勿入下载 | 少妇无码av无码专区在线观看 | 人人澡人人透人人爽 | www国产亚洲精品久久久日本 | 人妻无码αv中文字幕久久琪琪布 | 国产绳艺sm调教室论坛 | 东北女人啪啪对白 | 国语精品一区二区三区 | 人妻少妇精品无码专区二区 | 在线观看欧美一区二区三区 | 人妻无码αv中文字幕久久琪琪布 | 成熟妇人a片免费看网站 | 午夜福利不卡在线视频 | 日本www一道久久久免费榴莲 | 蜜臀av无码人妻精品 | 亚洲精品无码人妻无码 | 无码国产乱人伦偷精品视频 | √天堂资源地址中文在线 | 亚洲色大成网站www国产 | 亚洲色欲久久久综合网东京热 | 一本色道婷婷久久欧美 | 野外少妇愉情中文字幕 | 精品一二三区久久aaa片 | 国产无av码在线观看 | 荫蒂被男人添的好舒服爽免费视频 | 国产手机在线αⅴ片无码观看 | 最新国产麻豆aⅴ精品无码 | 国产偷国产偷精品高清尤物 | 成人免费视频视频在线观看 免费 | 精品无码国产一区二区三区av | 精品人妻人人做人人爽夜夜爽 | 西西人体www44rt大胆高清 | 欧美性生交xxxxx久久久 | 娇妻被黑人粗大高潮白浆 | 97无码免费人妻超级碰碰夜夜 | 久久久久久久久蜜桃 | 最新版天堂资源中文官网 | 欧美日韩一区二区综合 | 天堂а√在线地址中文在线 | 成人性做爰aaa片免费看不忠 | 麻豆国产丝袜白领秘书在线观看 | 麻豆av传媒蜜桃天美传媒 | 天天综合网天天综合色 | 水蜜桃亚洲一二三四在线 | 欧美人妻一区二区三区 | 日本一卡2卡3卡四卡精品网站 | 精品国产一区二区三区四区在线看 | 3d动漫精品啪啪一区二区中 | 免费中文字幕日韩欧美 | 全黄性性激高免费视频 | 成人性做爰aaa片免费看不忠 | 精品国产乱码久久久久乱码 | 亚洲中文字幕无码中文字在线 | 无遮挡啪啪摇乳动态图 | 久久人人爽人人爽人人片ⅴ | 国内精品一区二区三区不卡 | 国产极品视觉盛宴 | 久久久久99精品成人片 | 一本一道久久综合久久 | 国产精品无码久久av | 十八禁真人啪啪免费网站 | 国产绳艺sm调教室论坛 | 色欲人妻aaaaaaa无码 | 日日橹狠狠爱欧美视频 | 午夜福利试看120秒体验区 | 国产人妻大战黑人第1集 | 色婷婷综合中文久久一本 | 牲欲强的熟妇农村老妇女 | 精品国产一区二区三区四区在线看 | 噜噜噜亚洲色成人网站 | 乱码午夜-极国产极内射 | 超碰97人人射妻 | 97精品国产97久久久久久免费 | 国产无遮挡又黄又爽又色 | 日韩在线不卡免费视频一区 | 中文字幕无码av波多野吉衣 | 少妇激情av一区二区 | 精品人人妻人人澡人人爽人人 | 亚洲自偷自拍另类第1页 | 久久久久久久人妻无码中文字幕爆 | 亚洲国产日韩a在线播放 | 久在线观看福利视频 | 性色欲网站人妻丰满中文久久不卡 | 成 人影片 免费观看 | 日日天日日夜日日摸 | 国产福利视频一区二区 | 国产成人无码av在线影院 | 荫蒂被男人添的好舒服爽免费视频 | 中文字幕av无码一区二区三区电影 | 成人精品视频一区二区三区尤物 | 水蜜桃亚洲一二三四在线 | 成 人 免费观看网站 | 久久久av男人的天堂 | 欧美一区二区三区视频在线观看 | 丰腴饱满的极品熟妇 | 亚洲aⅴ无码成人网站国产app | 日本精品人妻无码免费大全 | 亚洲综合伊人久久大杳蕉 | 亚洲 日韩 欧美 成人 在线观看 | 少妇无码av无码专区在线观看 | 免费视频欧美无人区码 | 亚洲欧洲日本无在线码 | 少妇被黑人到高潮喷出白浆 | 两性色午夜免费视频 | √8天堂资源地址中文在线 | 日产国产精品亚洲系列 | 亚洲中文字幕乱码av波多ji | yw尤物av无码国产在线观看 | 国产成人精品一区二区在线小狼 | 亚洲精品国产第一综合99久久 | 中文字幕无线码 | 强奷人妻日本中文字幕 | 性生交片免费无码看人 | 亚洲娇小与黑人巨大交 | 中文无码精品a∨在线观看不卡 | 18无码粉嫩小泬无套在线观看 | 中文字幕色婷婷在线视频 | 伊人色综合久久天天小片 | 亚洲成a人片在线观看无码 | 精品乱子伦一区二区三区 | 精品亚洲成av人在线观看 | 六月丁香婷婷色狠狠久久 | 精品欧洲av无码一区二区三区 | 国产精品久久久久久久9999 | 中文亚洲成a人片在线观看 | 色综合久久久久综合一本到桃花网 | aa片在线观看视频在线播放 | 国产精品丝袜黑色高跟鞋 | 久久久久久久久蜜桃 | 国产又爽又猛又粗的视频a片 | 美女黄网站人色视频免费国产 | 久9re热视频这里只有精品 | 精品久久综合1区2区3区激情 | 亚洲码国产精品高潮在线 | 成年女人永久免费看片 | 亚洲精品一区二区三区在线 | 在线精品亚洲一区二区 | 久久99精品国产麻豆 | 性史性农村dvd毛片 | 国产色在线 | 国产 | 高潮毛片无遮挡高清免费 | 国产精品久久久一区二区三区 | 精品夜夜澡人妻无码av蜜桃 | 久久97精品久久久久久久不卡 | 日本成熟视频免费视频 | 清纯唯美经典一区二区 | 高潮毛片无遮挡高清免费 | 精品国偷自产在线视频 | 国产69精品久久久久app下载 | 人人爽人人澡人人人妻 | 国产精品无码久久av | 中文精品无码中文字幕无码专区 | 亚洲日韩一区二区三区 | 中文字幕无码av波多野吉衣 | 国产精品亚洲专区无码不卡 | 欧美激情综合亚洲一二区 | 欧美日韩综合一区二区三区 | 夜精品a片一区二区三区无码白浆 | 又大又黄又粗又爽的免费视频 | 一本色道久久综合亚洲精品不卡 | 宝宝好涨水快流出来免费视频 | 国产真实乱对白精彩久久 | 亚洲精品美女久久久久久久 | 成熟人妻av无码专区 | 精品国产av色一区二区深夜久久 | 99久久精品午夜一区二区 | 国产精品久久久一区二区三区 | 国产乱人伦偷精品视频 | 欧美三级a做爰在线观看 | 欧美乱妇无乱码大黄a片 | 国产黄在线观看免费观看不卡 | 亚洲精品久久久久久一区二区 | √天堂资源地址中文在线 | 高潮毛片无遮挡高清免费视频 | 人人妻人人澡人人爽人人精品 | 亚洲区欧美区综合区自拍区 | 亚洲国产日韩a在线播放 | 久久久久久久人妻无码中文字幕爆 | 成人一在线视频日韩国产 | 精品亚洲成av人在线观看 | 久久综合给合久久狠狠狠97色 | 无码免费一区二区三区 | 美女张开腿让人桶 | 高清不卡一区二区三区 | 又粗又大又硬毛片免费看 | av在线亚洲欧洲日产一区二区 | 久久成人a毛片免费观看网站 | 一个人免费观看的www视频 | 国产真实乱对白精彩久久 | 色婷婷综合激情综在线播放 | 永久免费精品精品永久-夜色 | 日日麻批免费40分钟无码 | 欧美日韩综合一区二区三区 | 少妇无码av无码专区在线观看 | 色欲人妻aaaaaaa无码 | 国产精品人人爽人人做我的可爱 | 亚洲精品欧美二区三区中文字幕 | 人妻天天爽夜夜爽一区二区 | 又色又爽又黄的美女裸体网站 | 熟妇激情内射com | 久久精品国产大片免费观看 | 日本免费一区二区三区最新 | 国产suv精品一区二区五 | 亚洲精品一区二区三区在线 | 东京热一精品无码av | a在线观看免费网站大全 | 欧美老妇交乱视频在线观看 | 麻豆av传媒蜜桃天美传媒 | 99久久久无码国产精品免费 | 亚洲中文无码av永久不收费 | 国产另类ts人妖一区二区 | aⅴ在线视频男人的天堂 | 乱码午夜-极国产极内射 | 亚洲区欧美区综合区自拍区 | 又大又紧又粉嫩18p少妇 | 久久久久av无码免费网 | 亚洲精品久久久久久久久久久 | 国产精品va在线播放 | 国产精品a成v人在线播放 | av在线亚洲欧洲日产一区二区 | 国产亚洲精品精品国产亚洲综合 | 久久亚洲国产成人精品性色 | 乱码av麻豆丝袜熟女系列 | 国产午夜手机精彩视频 | 四虎4hu永久免费 | 最新国产乱人伦偷精品免费网站 | 亚洲熟女一区二区三区 | 国产成人无码a区在线观看视频app | 好男人社区资源 | 四虎永久在线精品免费网址 | 国产精品理论片在线观看 | 午夜不卡av免费 一本久久a久久精品vr综合 | 久久久久久久女国产乱让韩 | 亚洲精品久久久久久久久久久 | 婷婷五月综合缴情在线视频 | 草草网站影院白丝内射 | 熟妇女人妻丰满少妇中文字幕 | 欧美猛少妇色xxxxx | 蜜臀av在线观看 在线欧美精品一区二区三区 | 激情人妻另类人妻伦 | 精品厕所偷拍各类美女tp嘘嘘 | 日韩精品成人一区二区三区 | 俺去俺来也www色官网 | 激情内射日本一区二区三区 | 国产亚洲tv在线观看 | 亚洲另类伦春色综合小说 | 国产无套粉嫩白浆在线 | 99国产欧美久久久精品 | 亚洲aⅴ无码成人网站国产app | 精品久久久无码人妻字幂 | 夜精品a片一区二区三区无码白浆 | 又色又爽又黄的美女裸体网站 | 日韩少妇白浆无码系列 | 亚洲成av人片在线观看无码不卡 | 国产香蕉尹人综合在线观看 | 成人精品一区二区三区中文字幕 | 人人妻人人澡人人爽人人精品 | 久久亚洲国产成人精品性色 | 强辱丰满人妻hd中文字幕 | 久久精品国产大片免费观看 | 中文亚洲成a人片在线观看 | 三级4级全黄60分钟 | 久久久久久国产精品无码下载 | 98国产精品综合一区二区三区 | 国产午夜亚洲精品不卡 | 欧美人妻一区二区三区 | 免费国产黄网站在线观看 | 美女扒开屁股让男人桶 | 黑人粗大猛烈进出高潮视频 | 精品人妻人人做人人爽夜夜爽 | 妺妺窝人体色www在线小说 | 乱码av麻豆丝袜熟女系列 | 国产在线aaa片一区二区99 | 色窝窝无码一区二区三区色欲 | 精品无码国产自产拍在线观看蜜 | 中文字幕乱码中文乱码51精品 | 婷婷五月综合激情中文字幕 | 国产成人无码av片在线观看不卡 | 国产真实乱对白精彩久久 | 精品人人妻人人澡人人爽人人 | 99国产精品白浆在线观看免费 | 在线精品亚洲一区二区 | 国产艳妇av在线观看果冻传媒 | 日本一本二本三区免费 | 国产精品沙发午睡系列 | 久久人人爽人人爽人人片av高清 | 丰满人妻被黑人猛烈进入 | 久久97精品久久久久久久不卡 | 国产成人精品久久亚洲高清不卡 | 给我免费的视频在线观看 | 特黄特色大片免费播放器图片 | 国产亚洲欧美日韩亚洲中文色 | 精品人妻av区 | 秋霞成人午夜鲁丝一区二区三区 | 色婷婷久久一区二区三区麻豆 | 久久亚洲国产成人精品性色 | 日本熟妇乱子伦xxxx | 欧美人与禽zoz0性伦交 | 免费观看的无遮挡av | 国产极品美女高潮无套在线观看 | 在线视频网站www色 | 久久久成人毛片无码 | 免费人成网站视频在线观看 | 波多野结衣aⅴ在线 | 丰满人妻精品国产99aⅴ | 玩弄中年熟妇正在播放 | 在线欧美精品一区二区三区 | 国产人妻人伦精品1国产丝袜 | 久久久久国色av免费观看性色 | 国内老熟妇对白xxxxhd | 国产av久久久久精东av | 日韩成人一区二区三区在线观看 | 国产猛烈高潮尖叫视频免费 | 人妻夜夜爽天天爽三区 | 国产成人无码a区在线观看视频app | 野外少妇愉情中文字幕 | 久久综合香蕉国产蜜臀av | 18无码粉嫩小泬无套在线观看 | 少妇一晚三次一区二区三区 | 亚洲精品一区二区三区在线观看 | 国产精品久久久久久亚洲毛片 | 兔费看少妇性l交大片免费 | 成人亚洲精品久久久久 | 精品一二三区久久aaa片 | 日日碰狠狠躁久久躁蜜桃 | 国产内射爽爽大片视频社区在线 | 好屌草这里只有精品 | 欧美自拍另类欧美综合图片区 | 玩弄人妻少妇500系列视频 | 午夜理论片yy44880影院 | 桃花色综合影院 | 亚洲男人av香蕉爽爽爽爽 | 麻豆果冻传媒2021精品传媒一区下载 | 精品国精品国产自在久国产87 | 99精品视频在线观看免费 | 国产一区二区不卡老阿姨 | 自拍偷自拍亚洲精品10p | 精品久久综合1区2区3区激情 | 午夜肉伦伦影院 | 亚洲国产日韩a在线播放 | 亚洲s码欧洲m码国产av | 天天拍夜夜添久久精品 | 好男人社区资源 | 国产黄在线观看免费观看不卡 | 天堂久久天堂av色综合 | 蜜桃av抽搐高潮一区二区 | 久久99精品久久久久久 | 激情国产av做激情国产爱 | 国产欧美亚洲精品a | 熟妇人妻无码xxx视频 | 无套内射视频囯产 | 亚洲欧美精品伊人久久 | 国产精品毛多多水多 | 粗大的内捧猛烈进出视频 | 无码国产激情在线观看 | 青草青草久热国产精品 | 亚洲欧美日韩国产精品一区二区 | 熟妇人妻无码xxx视频 | 少妇性l交大片欧洲热妇乱xxx | 性色av无码免费一区二区三区 | 国产成人无码av一区二区 | 久久综合香蕉国产蜜臀av | 十八禁视频网站在线观看 | 日本熟妇乱子伦xxxx | 久久99精品久久久久婷婷 | 免费无码一区二区三区蜜桃大 | 性欧美疯狂xxxxbbbb | 亚洲国产欧美日韩精品一区二区三区 | 亚洲色在线无码国产精品不卡 | 精品无码一区二区三区的天堂 | 亚洲国产综合无码一区 | 国产色精品久久人妻 | 国产内射老熟女aaaa | 2020最新国产自产精品 | 无码任你躁久久久久久久 | 内射后入在线观看一区 | 2020久久香蕉国产线看观看 | 亚洲国产精品久久久久久 | 人妻夜夜爽天天爽三区 | 亚洲国产精品久久人人爱 | 亚洲男女内射在线播放 | 日本饥渴人妻欲求不满 | 欧美喷潮久久久xxxxx | 国产亚洲精品久久久久久久 | 成在人线av无码免观看麻豆 | 国产九九九九九九九a片 | 搡女人真爽免费视频大全 | 欧美日韩综合一区二区三区 | 少妇被黑人到高潮喷出白浆 | 国产午夜无码视频在线观看 | 国产精品香蕉在线观看 | 99精品视频在线观看免费 | 国产无遮挡吃胸膜奶免费看 | 国产三级精品三级男人的天堂 | 日韩av无码一区二区三区 | 午夜时刻免费入口 | 亚洲精品一区二区三区在线 | 麻花豆传媒剧国产免费mv在线 | 麻豆成人精品国产免费 | 国精产品一区二区三区 | a国产一区二区免费入口 | 欧美成人免费全部网站 | 亚洲理论电影在线观看 | 国产明星裸体无码xxxx视频 | 精品熟女少妇av免费观看 | 性啪啪chinese东北女人 | 丁香花在线影院观看在线播放 | 中文字幕av伊人av无码av | 狠狠色噜噜狠狠狠狠7777米奇 | 久久精品女人的天堂av | 国产精品久久久久7777 | 国产特级毛片aaaaaa高潮流水 | 国产一区二区不卡老阿姨 | 一区二区三区乱码在线 | 欧洲 | 日本精品久久久久中文字幕 | 国产成人无码午夜视频在线观看 | 18禁黄网站男男禁片免费观看 | 欧美兽交xxxx×视频 | 熟妇激情内射com | 女人被爽到呻吟gif动态图视看 | 中文字幕亚洲情99在线 | 国产肉丝袜在线观看 | 国内精品人妻无码久久久影院 | 女人和拘做爰正片视频 | 精品人人妻人人澡人人爽人人 | 国产av一区二区精品久久凹凸 | 一本色道久久综合亚洲精品不卡 | 成人精品视频一区二区 | 欧美丰满少妇xxxx性 | 国产真实乱对白精彩久久 | 精品厕所偷拍各类美女tp嘘嘘 | 国产电影无码午夜在线播放 | 国产成人久久精品流白浆 | 国产真实伦对白全集 | 欧美第一黄网免费网站 | 色五月五月丁香亚洲综合网 | 人人澡人人妻人人爽人人蜜桃 | 伊人久久大香线蕉av一区二区 | 午夜精品久久久内射近拍高清 | 亚洲一区二区三区国产精华液 | 欧美丰满少妇xxxx性 | 丰满诱人的人妻3 | 色情久久久av熟女人妻网站 | 激情内射日本一区二区三区 | 成人女人看片免费视频放人 | 麻豆国产丝袜白领秘书在线观看 | 福利一区二区三区视频在线观看 | 久久国产精品_国产精品 | 国产人妖乱国产精品人妖 | 成熟女人特级毛片www免费 | 欧美日韩亚洲国产精品 | 伊人久久大香线焦av综合影院 | 亚洲一区二区三区 | 国内少妇偷人精品视频 | 亚欧洲精品在线视频免费观看 | 婷婷色婷婷开心五月四房播播 | 国产av人人夜夜澡人人爽麻豆 | 日本va欧美va欧美va精品 | 国产麻豆精品一区二区三区v视界 | 四虎永久在线精品免费网址 | 日本精品久久久久中文字幕 | 日韩 欧美 动漫 国产 制服 | 亚洲 高清 成人 动漫 | 欧美精品一区二区精品久久 | 欧美性猛交内射兽交老熟妇 | 国产莉萝无码av在线播放 | 丰满人妻被黑人猛烈进入 | 少女韩国电视剧在线观看完整 | 国产精品va在线播放 | 亚洲中文字幕乱码av波多ji | 国产免费无码一区二区视频 | 男女性色大片免费网站 | 精品夜夜澡人妻无码av蜜桃 | 一区二区传媒有限公司 | 小sao货水好多真紧h无码视频 | 色综合天天综合狠狠爱 | 国产亚洲精品久久久久久久久动漫 | 久久国产劲爆∧v内射 | 无码免费一区二区三区 | 欧美精品国产综合久久 |