UA MATH574 概率论 一个均匀分布的例题2018May/4
UA MATH574 概率論 均勻分布例題
2018May第四題。
Part a
Let Zi=?ln?UiZ_i =- \ln U_iZi?=?lnUi?,
P(Zi≤z)=P(?ln?Ui≤z)=P(Ui≥e?z)=1?FU(e?z)fZ(z)=e?z,z>0P(Z_i \le z) = P(-\ln U_i \le z) = P(U_i \ge e^{-z}) = 1 - F_U(e^{-z}) \\ f_Z(z) = e^{-z},z>0P(Zi?≤z)=P(?lnUi?≤z)=P(Ui?≥e?z)=1?FU?(e?z)fZ?(z)=e?z,z>0
This means Zi~EXP(1)=dΓ(1,1)Z_i \sim EXP(1) =_d \Gamma(1,1)Zi?~EXP(1)=d?Γ(1,1). By additivity, ∑i=1nZi~Γ(n,1)\sum_{i=1}^n Z_i \sim \Gamma(n,1)∑i=1n?Zi?~Γ(n,1). Note that Vn=e?∑i=1nZiV_n = e^{-\sum_{i=1}^n Z_i}Vn?=e?∑i=1n?Zi?,
P(Vn≤v)=P(e?∑i=1nZi≤v)=P(∑i=1nZi≥?ln?v)fVn(v)=1v(n?1)ln?(1/v)Γ(n)eln?v=?n?1Γ(n)ln?v,v∈(0,1)P(V_n \le v) = P(e^{-\sum_{i=1}^n Z_i} \le v) = P(\sum_{i=1}^n Z_i \ge -\ln v) \\ f_{V_n}(v) = \frac{1}{v} \frac{(n-1)\ln (1/v)}{\Gamma(n)}e^{\ln v} = -\frac{n-1}{\Gamma(n)}\ln v,v \in (0,1)P(Vn?≤v)=P(e?∑i=1n?Zi?≤v)=P(i=1∑n?Zi?≥?lnv)fVn??(v)=v1?Γ(n)(n?1)ln(1/v)?elnv=?Γ(n)n?1?lnv,v∈(0,1)
Part b
Notice Ui/SnU_i/S_nUi?/Sn?s should have the same distribution,
E[U1/Sn]=1nE[∑i=1nUi/Sn]=1nE[Sn/Sn]=1nE[U_1/S_n] = \frac{1}{n}E[\sum_{i=1}^n U_i/S_n] = \frac{1}{n}E[S_n/S_n] = \frac{1}{n}E[U1?/Sn?]=n1?E[i=1∑n?Ui?/Sn?]=n1?E[Sn?/Sn?]=n1?
Part c
Define Y=ln?(Vn)?1/Sn=1Sn(?ln?Vn)=Zˉ/UˉY = \ln (V_n)^{-1/S_n} =\frac{1}{S_n}(-\ln V_n) =\bar{Z}/\bar{U}Y=ln(Vn?)?1/Sn?=Sn?1?(?lnVn?)=Zˉ/Uˉ. By LLN, Uˉ→p1/2\bar{U} \to_p 1/2Uˉ→p?1/2, Zˉ→p1\bar{Z} \to_p 1Zˉ→p?1. By property of convergence in probability, Zˉ/Uˉ→p2\bar{Z}/\bar{U} \to_p 2Zˉ/Uˉ→p?2 and (Vn)?1/Sn→pe2(V_n)^{-1/S_n} \to_p e^{2}(Vn?)?1/Sn?→p?e2
Part d
1
總結(jié)
以上是生活随笔為你收集整理的UA MATH574 概率论 一个均匀分布的例题2018May/4的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH564 概率分布总结
- 下一篇: UA MATH564 概率论 Diric