UA SIE545 优化理论基础3 Fritz-John与Kuhn-Tucker理论总结 带等式约束与不等式约束的极值问题
UA SIE545 優化理論基礎3 Fritz-John與Kuhn-Tucker理論總結 帶等式約束與不等式約束的極值問題
對于函數f:X→Yf:X \to Yf:X→Y,我們希望XXX是一個凸的度量空間(或者拓撲空間),YYY是一個定義了良序的內積空間。N?(x)N_{\epsilon}(x)N??(x)表示中心為xxx,半徑為?\epsilon?的領域,下面先列出幾個會用到的概念。
Global minimum If xˉ∈X\bar x \in Xxˉ∈X, ?x∈X\forall x \in X?x∈X, f(xˉ)≤f(x)f(\bar x) \le f(x)f(xˉ)≤f(x), then xˉ\bar xxˉ is a global minimum. If equality in f(xˉ)≤f(x)f(\bar x) \le f(x)f(xˉ)≤f(x) will never hold, then xˉ\bar xxˉ is strict global minimum.
Local minimum If xˉ∈X\bar x \in Xxˉ∈X, ??>0\exists \epsilon>0??>0, ?x∈N?(xˉ)\forall x \in N_{\epsilon}(\bar x)?x∈N??(xˉ), f(xˉ)≤f(x)f(\bar x) \le f(x)f(xˉ)≤f(x), then xˉ\bar xxˉ is a local minimum. If equality in f(xˉ)≤f(x)f(\bar x) \le f(x)f(xˉ)≤f(x) will never hold, then xˉ\bar xxˉ is strict local minimum.
Pseudoconvex ?x1,x2∈X\forall x_1,x_2 \in X?x1?,x2?∈X such that ?f(x1)T(x2?x1)≥0\nabla f(x_1)^T(x_2-x_1) \ge 0?f(x1?)T(x2??x1?)≥0, we have f(x2)≥f(x1)f(x_2) \ge f(x_1)f(x2?)≥f(x1?).
Quasiconvex ?x1,x2∈X,λ∈[0,1]\forall x_1,x_2 \in X,\lambda \in [0,1]?x1?,x2?∈X,λ∈[0,1] such that f(λx1+(1?λ)x2)≤max?(f(x),f(y))f(\lambda x_1+ (1-\lambda)x_2) \le \max(f(x),f(y))f(λx1?+(1?λ)x2?)≤max(f(x),f(y))
min?x∈Sf(x)\min_{x \in S} f(x)minx∈S?f(x),其中SSS是XXX的子集。
Cone of feasible directions at xˉ∈clS\bar x \in clSxˉ∈clS,
D={d≠0:?δ>0,?λ∈(0,δ),xˉ+λd∈S}D=\{d \ne 0:\exists \delta>0, \forall \lambda \in (0,\delta),\bar x+\lambda d \in S\}D={d?=0:?δ>0,?λ∈(0,δ),xˉ+λd∈S}
Each d∈Dd \in Dd∈D is called feasible direction.
Cone of improving direction at xˉ∈clS\bar x \in clSxˉ∈clS,
F={d:?δ>0,?λ∈(0,δ),f(xˉ+λd)<f(xˉ)}F=\{d:\exists \delta>0,\forall \lambda \in (0,\delta),f(\bar x+\lambda d)<f(\bar x)\}F={d:?δ>0,?λ∈(0,δ),f(xˉ+λd)<f(xˉ)}Each d∈Fd \in Fd∈F is called improving direction.
無約束極值問題
min?x∈Xf(x)\min_{x \in X}f(x)x∈Xmin?f(x)
Let xˉ∈X\bar x \in Xxˉ∈X be a candidate point. PSD = positive semi-definite, PD = positive definite.
First order necessary condition:
?f(xˉ)=0\nabla f(\bar x) = 0?f(xˉ)=0
Second order necessary condition:
H(xˉ)PSDH(\bar x)\ PSDH(xˉ)?PSD
Second order sufficient condition:
H(xˉ)PDH(\bar x)\ PDH(xˉ)?PD
For convex optimization, sufficient and necessary condition:
?f(xˉ)=0\nabla f(\bar x) = 0?f(xˉ)=0
含等式約束與不等式約束的極值問題
min?x∈Xf(x)s.t.g(x)≤0h(x)=0\min_{x \in X} f(x) \\ s.t. g(x) \le 0 \\ h(x)=0x∈Xmin?f(x)s.t.g(x)≤0h(x)=0
Let LLL be Lagrange function:
L(x)=f(x)+uTg(x)+vTh(x)L(x) = f(x)+u^Tg(x)+v^Th(x)L(x)=f(x)+uTg(x)+vTh(x)
Fritz-John (FJ First order necessary condition):
u0T?f(xˉ)+uT?g(xˉ)+vT?h(xˉ)=0uTg(xˉ)=0(u0,u)≥0,(u0,u,v)≠0u_0^T\nabla f(\bar x)+u^T\nabla g(\bar x)+v^T\nabla h(\bar x)=0 \\ u^T g(\bar x) = 0 \\ (u_0,u) \ge 0, (u_0,u,v) \ne 0u0T??f(xˉ)+uT?g(xˉ)+vT?h(xˉ)=0uTg(xˉ)=0(u0?,u)≥0,(u0?,u,v)?=0
Karush-Kuhn-Tucker (KKT first order necessary condition):
g(xˉ)≤0?f(xˉ)+uT?g(xˉ)+vT?h(xˉ)=0,u≥0uTg(xˉ)=0g(\bar x) \le 0\\ \nabla f(\bar x)+u^T\nabla g(\bar x)+v^T\nabla h(\bar x)=0,u \ge 0 \\ u^T g(\bar x) = 0 g(xˉ)≤0?f(xˉ)+uT?g(xˉ)+vT?h(xˉ)=0,u≥0uTg(xˉ)=0
and ?g(xˉ)\nabla g(\bar x)?g(xˉ) and ?h(xˉ)\nabla h(\bar x)?h(xˉ) are linearly independent. 第一個條件叫primal feasibility(PF)、第二個條件dual feasibility(DF),第三個條件約束的是complementary slacks (CS),最后一個條件叫constraint qualification,保證KKT與FJ等價。
KKT second-order necessary condition:
HL(xˉ)PSDHL(\bar x)\ PSDHL(xˉ)?PSD
KKT second-order sufficient condition:
HL(xˉ)PDHL(\bar x)\ PDHL(xˉ)?PD
例 考慮下面的優化問題
min?f(x1,x2)=(x1?1)2+x22s.t.g(x1,x2)=2kx1?x22≤0,k>0\min f(x_1,x_2)=(x_1-1)^2+x_2^2 \\ s.t.g(x_1,x_2)=2kx_1-x_2^2 \le 0, k > 0minf(x1?,x2?)=(x1??1)2+x22?s.t.g(x1?,x2?)=2kx1??x22?≤0,k>0
因為
Hf(x1,x2)=[2002],Hg(x1,x2)=[000?2]Hf(x_1,x_2) = \left[ \begin{matrix} 2 & 0 \\ 0 & 2 \end{matrix}\right], \ Hg(x_1,x_2) = \left[ \begin{matrix} 0 & 0 \\ 0 & -2 \end{matrix}\right]Hf(x1?,x2?)=[20?02?],?Hg(x1?,x2?)=[00?0?2?]
顯然fff是凸函數但ggg不是,因此這個優化不是凸優化,那么如何計算這個優化的最優解呢?
解
注意到目標函數是圓,約束的邊界是拋物線,所以可以用作圖法求解,非常簡單讀者可以自行嘗試。我們來討論一下代數解法,考慮KKT條件,但需要注意這個問題非凸,所以KKT條件并不是充分條件。因為
?g(x1,x2)=2[k?x2],k>0\nabla g(x_1,x_2) = 2 \left[ \begin{matrix} k \\ -x_2 \end{matrix} \right],k>0?g(x1?,x2?)=2[k?x2??],k>0
也就是說?g(x1,x2)\nabla g(x_1,x_2)?g(x1?,x2?)非零,所以?g(xˉ)\nabla g(\bar x)?g(xˉ) and ?h(xˉ)\nabla h(\bar x)?h(xˉ) are linearly independent這個條件成立,因此KKT是必要條件。
定義Lagrange函數:
L(x1,x2,u)=f(x1,x2)+ug(x1,x2)=(x1?1)2+x22+u(2kx1?x22)L(x_1,x_2,u)=f(x_1,x_2)+ug(x_1,x_2) \\ =(x_1-1)^2+x_2^2 +u(2kx_1-x_2^2 ) L(x1?,x2?,u)=f(x1?,x2?)+ug(x1?,x2?)=(x1??1)2+x22?+u(2kx1??x22?)
寫出KKT條件:
{2(x1?1)+2ku=02x2?2ux2=0ug(x1,x2)=u(2kx1?x22)=0g(x1,x2)=2kx1?x22≤0u≥0\begin{cases} 2(x_1-1)+2ku = 0 \\ 2x_2 -2ux_2 = 0 \\ug(x_1,x_2) = u(2kx_1-x_2^2) = 0 \\ g(x_1,x_2)=2kx_1-x_2^2 \le 0 \\ u \ge 0 \end{cases}????????????????2(x1??1)+2ku=02x2??2ux2?=0ug(x1?,x2?)=u(2kx1??x22?)=0g(x1?,x2?)=2kx1??x22?≤0u≥0?
接下來做分類討論:
現在我們有了三組可能的解,但還需要根據kkk的值做分類討論:
{f(0,0)=1f(1?k,±2k(1?k))=2k?k2\begin{cases} f(0,0) = 1 \\ f(1-k,\pm \sqrt{2k(1-k)})=2k-k^2 \end{cases}{f(0,0)=1f(1?k,±2k(1?k)?)=2k?k2?
因為
2k?k2?1=?(k?1)2≤02k-k^2-1 = -(k-1)^2 \le 02k?k2?1=?(k?1)2≤0
所以(1?k,2k(1?k)),(1?k,?2k(1?k))(1-k,\sqrt{2k(1-k)}),(1-k,-\sqrt{2k(1-k)})(1?k,2k(1?k)?),(1?k,?2k(1?k)?)是最優點。
總結
以上是生活随笔為你收集整理的UA SIE545 优化理论基础3 Fritz-John与Kuhn-Tucker理论总结 带等式约束与不等式约束的极值问题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: UA MATH523A 实分析3 积分理
- 下一篇: UA MATH563 概率论的数学基础