数学图形(2.26) 3D曲线结
生活随笔
收集整理的這篇文章主要介紹了
数学图形(2.26) 3D曲线结
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
我收集的幾種曲線結
knot(huit)
#http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml vertices = 1000t = from 0 to (80*PI)x = sin(t) y = sin(t)*cos(t)/2 z = sin(2*t)*sin(t/2) / 4r = 10; x = x*r y = y*r z = z*rknot(Paul Bourke)
#http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml vertices = 1000t = from 0 to (80*PI)x = 3*cos(t) + 5*cos(3*t) y = 3*sin(t) + 5*sin(3*t) z = sin(5*t/2)*sin(3*t) + sin(4*t) - sin(6*t)r = 4; x = x*r y = y*r z = z*rknot(Rohit Chaudhary)
#http://www.mathcurve.com/courbes3d/noeuds/noeudenhuit.shtml vertices = 12000t = from 0 to (2*PI)a = sin(t) b = cos(t) c = sin(2*t) d = cos(2*t) e = sin(3*t) f = cos(3*t)x = 32*b - 51*a - 104*d - 34*c + 104*f - 91*e y = 94*b + 41*a + 113*d - 68*f - 124*e z = 16*b + 73*a - 211*d - 39*c - 99*f - 21*e轉載于:https://www.cnblogs.com/WhyEngine/p/3843987.html
總結
以上是生活随笔為你收集整理的数学图形(2.26) 3D曲线结的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Codechef_JULY14
- 下一篇: 【转】rails 遇到 Could no