PostgreSQL查询优化器之grouping_planner
生活随笔
收集整理的這篇文章主要介紹了
PostgreSQL查询优化器之grouping_planner
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
grouping_planner主要做了3個工作:
grouping_planner實現代碼如下:
static void grouping_planner(PlannerInfo *root, bool inheritance_update,double tuple_fraction) {/* 如果存在limit,offset,元組片段因子要改小 */if (parse->limitCount || parse->limitOffset){tuple_fraction = preprocess_limit(root, tuple_fraction,&offset_est, &count_est);}/* Make tuple_fraction accessible to lower-level routines */root->tuple_fraction = tuple_fraction;//判斷是否存在集合操作,如何存在,則處理集合運算。if (parse->setOperations){//會把集合語句按照集合操作符(差,并,交)分割SQL語句,//然后調用為每一個獨立的部分調用subquery_planner,//所以Postgresql幾乎不支持集合優化//current_rel = plan_set_operations(root);//順便求出路徑排序root->sort_pathkeys = make_pathkeys_for_sortclauses(root,parse->sortClause,tlist);}else//非集合操作{/* ORDER BY和GROUP BY同時存在,先GROUP BY,在ORDER BY */if (parse->groupingSets){groupclause = preprocess_groupclause(root,linitial(current_sets));}/* 對目標列進行處理*/tlist = preprocess_targetlist(root, tlist);//提前執行帶有max/min的聚合函數子句if (parse->hasAggs)preprocess_minmax_aggregates(root, tlist);}/*最優路徑*/current_rel = query_planner(root, tlist,standard_qp_callback, &qp_extra);//為max/min生成執行計劃if (parse->hasAggs)preprocess_minmax_aggregates(root, tlist);} }query_planner生成最優查詢路徑
產生兩個最優查詢路徑,主要是cheatest_path(未排序)和sorted_path(排序)
RelOptInfo * query_planner(PlannerInfo *root, List *tlist,query_pathkeys_callback qp_callback, void *qp_extra) {/** If the query has an empty join tree, then it's something easy like* "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly.*/if (parse->jointree->fromlist == NIL){/** We still are required to call qp_callback, in case it's something* like "SELECT 2+2 ORDER BY 1".標準化其他排序鍵,例如ORDER BY,GROUP BY*/root->canon_pathkeys = NIL;(*qp_callback) (root, qp_extra);return final_rel;}//初始化ROOT成員/*找出所有基本表,放入simple_rte_array */setup_simple_rel_arrays(root);/*找出所有基本表,放入生成基本關系*/add_base_rels_to_query(root, (Node *) parse->jointree);//分解where和join中的約束條件,構建連接樹joinlist = deconstruct_jointree(root);/*檢查外連接子句,把外連接的約束條件分發到對應關系上* ,看源碼好像沒有推到join關系上,而是推到join關系的子關系上*/reconsider_outer_join_clauses(root);/*處理隱含約束條件*/generate_base_implied_equalities(root);/*去除無用連接*/joinlist = remove_useless_joins(root, joinlist);/*完成多表鏈接,采用動態規劃和遺傳算法 */final_rel = make_one_rel(root, joinlist);return final_rel; }deconstruct_jointree構造連接樹函數
deconstruct_jointree用于分解樹上的連接結構,分解方式為:把where和join中每個子句加入一個list中,然后把約束條件分配到每個關系上。一是把限制條件分配到基本關系上,二是把連接條件分配到連接關系上。這些本質上是邏輯優化階段的“謂詞下推操作”。但是由于此時還沒有構造join關系,所以不能推到join關系上
static List * deconstruct_recurse(PlannerInfo *root, Node *jtnode, bool below_outer_join,Relids *qualscope, Relids *inner_join_rels,List **postponed_qual_list) {if (IsA(jtnode, RangeTblRef)){//構造只有一個節點的關系joinlist = list_make1(jtnode);}else if (IsA(jtnode, FromExpr)){//遞歸構造每一個From子句,然后把結果下推/** Now process the top-level quals.*/foreach(l, (List *) f->quals){ //還構建了RestrictInfodistribute_qual_to_rels(root, qual,false, below_outer_join, JOIN_INNER,*qualscope, NULL, NULL, NULL,postponed_qual_list);}}else if (IsA(jtnode, JoinExpr)){//遞歸構造join兩邊switch (j->jointype){case JOIN_INNER:case JOIN_ANTI:case JOIN_FULL:default:}/*處理join下推*/foreach(l, my_quals){Node *qual = (Node *) lfirst(l);distribute_qual_to_rels(root, qual,false, below_outer_join, j->jointype,*qualscope,ojscope, nonnullable_rels, NULL,postponed_qual_list);}}return joinlist; }reconsider_outer_join_clauses
分發外連接子句的約束條件
generate_base_implied_equalites
找出隱含條件,進一步謂詞下推
make_one_rel 構造多表連接路徑并選擇最優路徑的函數
RelOptInfo * make_one_rel(PlannerInfo *root, List *joinlist) {/* Mark base rels as to whether we care about fast-start plans */set_base_rel_consider_startup(root);//為每個基本關系估計大小set_base_rel_sizes(root);//為每個基本關系生成RelOptInfo結構,并且生成訪問路徑放在path,這是單表/子查詢的最佳掃描方式.set_base_rel_pathlists(root);/*返回一個最終的連接所有表的RelOptInfo */rel = make_rel_from_joinlist(root, joinlist);/** The result should join all and only the query's base rels.*/Assert(bms_equal(rel->relids, root->all_baserels));return rel; }make_rel_from_joinlist
joinlist是從where和join on子句找出能做連接操作的對象
static RelOptInfo * make_rel_from_joinlist(PlannerInfo *root, List *joinlist) {/** Construct a list of rels corresponding to the child joinlist nodes.* This may contain both base rels and rels constructed according to* sub-joinlists.*/initial_rels = NIL;foreach(jl, joinlist){if (IsA(jlnode, RangeTblRef))//范圍表直接找出要連接的關系{int varno = ((RangeTblRef *) jlnode)->rtindex;thisrel = find_base_rel(root, varno);}else if (IsA(jlnode, List))//遍歷子查詢{/* Recurse to handle subproblem */thisrel = make_rel_from_joinlist(root, (List *) jlnode);}initial_rels = lappend(initial_rels, thisrel);}if (levels_needed == 1){}else{root->initial_rels = initial_rels;if (join_search_hook)return (*join_search_hook) (root, levels_needed, initial_rels);//用戶自定義else if (enable_geqo && levels_needed >= geqo_threshold)return geqo(root, levels_needed, initial_rels);//遺傳算法elsereturn standard_join_search(root, levels_needed, initial_rels);//動態規劃} }動態規劃算法
例如:有一條SQL語句
SELECT * FROM A,B,C,D where A.a=B.a and ...
每層的關系如下:
轉載于:https://www.cnblogs.com/biterror/p/7161671.html
總結
以上是生活随笔為你收集整理的PostgreSQL查询优化器之grouping_planner的全部內容,希望文章能夠幫你解決所遇到的問題。